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Optimal plan property

• The optimal investment plan is such that the operational benefits 
and requirements are in equilibrium with the investment cost:  
𝜕𝑐#$% 𝑥 = −𝜕𝐻 𝑥

• Question: how to teach the operational model all the economic 
benefits of transmission assets in the many possible circumstances? 

minimize
/,1 2

𝑐#$% 𝑥 + 𝐻 𝑥

subject to: 𝐴𝑥 ≤ 𝑏
𝑥 ∈ 0,1 $

𝐻 𝑥 = min
1 2

𝜌2 𝑐 𝑥, 𝑦 𝜉 , 𝜉

subject to: 𝑊𝑦 𝜉 𝜔 ≥ ℎ 𝜉 𝜔 − 𝑇𝑥 ∀𝜔 ∈ Ω

Investment cost Measure of the operational cost: 𝐻 𝑥

Investment constraints

Operational problem

Operational constraints



It is key to consider complex interactions between 
substitute and complementary resources

• Renewable generation and reserve 
levels
– Connecting renewables requires more 

reserves

• How to capture this complex 
interaction?
– Uncertainty modeling plays a key role!

Complex interactions example
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Cheap reserve

Expensive reserves



It is key to consider complex interactions between 
substitute and complementary resources

• New transmission lines may avoid 
expensive reserve deployment and ensure 
deliverability

– New lines can bring cheap reserves from 
other areas

– Voltage Kirchhoff’s Law (KVL) and security 
criteria constraints must be considered

• How to capture this complex interaction?

– Short-term operation modeling plays a key 
role!

Complex interactions example
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Role: reliability
(cheap reserve deliverability)

Cheap reserve

Renewable
Variability

ReservesTransmission Deliverable



Long-term uncertainty
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• Market-driven active demand 
• Large number of small non-controllable random power sources
• Energy storage devices smoothing or gambling ? 
• Interactions with other networks and infrastructure (heat, gas, transport)

21th Century 
power system



Deep uncertainty in long-term drivers
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• Deep uncertainty in economical, political, technological, climatic drivers

• In Brazil, the water inflows have significantly changed in the last years

• Policy makers can significantly change the incentives for renewables 

• Technological disruptions are imminent !

Invest
now?

new cli
mate policy

passe
d!

new climate policy

did not pass

Wind costs

remain the same

Wind costs

drastically falls

Wind costs

remain the same

Wind costs

drastically falls

policy Technology

Climate

remains the same

Climatechanges

Climate
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Long-term drivers change short-term profiles

• Long-term scenarios define expected values (first moment) and ranges (support)

• Short-term uncertainty should be modeled as conditional distributions

• How to model the distribution of short-term not seen before?
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Example of two-stage robust models
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• Expanding lines and renewables 
to meet targets

• Co-optimization of generation, 
transmission, and reserve levels

M
aster

Array of oracles

• Compound security criterion:
– n-1 and n-2 with zero load sheading 
– n-3 with no more than 2.5% load sheading

• With correlation between renewables 
generation



Main Chilean Power System Case Study 

Slide 11



Main Chilean Power System Case Study 
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Main Chilean Power System Case Study 
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Wind spillage is mitigated while 
increasing security
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Long-term drivers change short-term profiles

Academic approach
• Hypothesis and principles

• Probabilistic models

• Data-driven estimation

• Many scenarios describing the 
estimated probability 
distributions (MC methods)

Industry approach
• Hypothesis and beliefs

• Big-data environment

• Collaborative panel of experts 
and long-term studies

• A few bottom-up economically 
coherent built scenarios



This is the goal of Operations Research
1. We need to define all possible actions and the level of information for each 

stage: planning and operational (variables)
2. We need to teach them how our world functions and what we accept or not 

through objective mathematical expressions (constraints)
3. And we need to define what is a virtuous plan (metric in objective function)

• We need to account for the uncertainties that create operational diversity in 
the short-term, allowing the model ”feel” the cost-and-benefit of each asset
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How do we teach models the many 
benefits of a transmission asset?
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• Two-stage stochastic 

• Two-stage robust

!"#

!"$

!#

!$ +Δ!#

+Δ!$

−Δ!#

−Δ!$
(

𝜉

𝑓 𝜉
x

dispatch cost for all 𝑡, 𝜔 = 1

sce
nario 1

scenario 𝑁

scenario 𝜔 dispatch cost for all 𝑡, 𝜔

dispatch cost for all 𝑡,𝜔 = 𝑁

First-stage decisions minimize the average cost 
considering all scenarios

x

dispatch cost for all 𝑡, 𝑠 = 1

dispatch cost for all 𝑡, 𝑠 = 2
𝒰

First-stage decisions ensuring feasibility
for critical scenarios

Classic models for short-term uncertainty

min𝔼K 𝐶𝑜𝑠𝑡 𝑥, 𝜉
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• Distributionally Robust

• First-stage decisions minimize the worst-case expected cost 
among all distributions considering all scenarios

New models for short-term uncertainty

𝜉
𝜇

𝑓 𝜉 𝑓O 𝜉𝑓P 𝜉
𝑓Q 𝜉

Ξ - support

𝜇 - average

𝑓S 𝜉

x

dispatch cost for all 𝑡, 𝜔 = 1

sce
nario 1

scenario 𝑁

scenario 𝜔 dispatch cost for all 𝑡, 𝜔

dispatch cost for all 𝑡,𝜔 = 𝑁

min
T
max
K∈℘

𝔼K 𝐶𝑜𝑠𝑡 𝑥, 𝜉

𝜉
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Decision stages and information level

Ambiguity set for long-term scenario 𝜔:

• Current industry practices based on long-term scenario studies define ranges 
for the expected net demand and its support for each 𝜔 ∈ Ω

• Conditional ambiguity sets are coupled to the long-term information 
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Minimize the worst-case expected total cost
• A new multi-scale distributionally robust model for TEP based on the concept 

of multiple conditional ambiguity sets, which is a novelty in the literature of 
DRO, and suitable to the current industry practices.
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The TEP model

Distributionally robust model Distributionally robust recourse function



Minimize the worst-case expected total cost
• A new multi-scale distributionally robust model for TEP based on the concept 

of multiple conditional ambiguity sets, which is a novelty in the literature of 
DRO, and suitable to the current industry practices.

• Operational model and its compact formulation
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The TEP model

Convex on 𝒙 and 𝝃

Distributionally robust model Distributionally robust recourse function



• Primal formulation

• Dual formulation

The worst-case recourse function is a semi-infinite problem
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Form the infinite to finite formulation



• Equivalent dual formulation

• Equivalent primal formulation

Dual constraints are always bind in extreme points 
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Form the infinite to finite formulation

𝜇[𝜉[P 𝜉[Q 𝜉

𝑝 𝜉



• Extended equivalent dual formulation (explicit operation model)

• Equivalent MILP DRO TEP
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The MILP DRO TEP model
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• Master problem 
defines 

Slide 27

Solution Methodology: in a given iteration j

• Subproblem  
updates 
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Solution Methodology

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• Master problem defines a  trial investment 
plan 𝑥 ] that should be evaluated in the 
recourse function

• A lower bound for the problem is defined 
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• The inner loop provides a LB and 
Dantzig Wolfe-like UB for the recourse 
function based on the reduced cost
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• The inner loop enhances the LB and UB 
recourse function approximation at 𝑥 ]
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• The inner loop enhances the LB and UB 
recourse function approximation at 𝑥 ]
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• When the DWP converges: reduced cost 
is zero and the recourse function is 
perfectly approximated at 𝑥 ]

𝐻 𝑥, 𝜔

0
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Dantzig Wolfe Procedure

• A tighter Upper Bound for the problem is 
found based on the recourse function UB (𝐻)

• The best 𝑀 scenarios are added into the 
master problem for the next iteration 𝑗 + 1
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Enhanced CCG algorithm

𝑥

𝐻 𝑥, 𝜔

𝑥 ]

• In the next iteration (𝑗 ← 𝑗 + 1): the master 
problem finds another point and lower bound 
with M newly added scenarios

𝐻 𝑥,𝜔
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

• The inner loop enhances the LB and UB 
recourse function approximation at 𝑥 ]

𝐻 𝑥, 𝜔

𝑥 ]
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

• The inner loop enhances the LB and UB 
recourse function approximation at 𝑥 ]

𝐻 𝑥, 𝜔

𝑥 ]
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Dantzig Wolfe Procedure

𝑥

𝐻 𝑥, 𝜔

• The DWP enhances the CCG algorithm
• Both lower and upper bounds are tighter

𝐻 𝑥,𝜔

𝑥 ]

0
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Methodological Contribution

𝑥

𝐻 𝑥, 𝜔

• The DWP enhances the CCG algorithm
• Both lower and upper bounds are tighter
• ECCG: convergence is accelerated when

– Master is heavy and Subproblem light
– Select M and L parameters

𝐻 𝑥,𝜔

𝑥 ]

𝜀
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Computational Experiments
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Computational Experiments
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Computational Experiments



More at www.puc-rio.br/lamps
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