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In Memoriam: Shabbir Ahmed

SLDP The work of professor Shabbir heavily inspired me to get into
S. Ahmed the Stochastic Mixed Integer Program field, specially the SDDiP

F. Cabral . . . . .
B F.P C algorithm, and | will always keep in my memory our discussions.

Figure: Professor Shabbir Ahmed.
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SLDP

Multistage MILP stochastic program

S. Ahmed
F. Cabral

B.F.P.C Qt(T4—1,ht) = min ¢ v + Oi(x4)
Intro S.t. Ext—l + tht = hta
xy € R x Zﬁ,

Oi(ry) = { I()E[Qt+1($t,ht+l)] ?iez{j{,,T — 1},

Comments:
m The function Q; is piecewise linear, but non-convex;

m The SLDP algorithm do not require the binarization of the
state variables such as the SDDiP [Zou-2019] and also do
not assume monotonicity of the cost-to-go function such
as the MIDAS [Philpott-2016] algorithm.
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nonlinear cuts?

The function bellow will be used to illustrate the SLDP

—— Opt. Value

Note that lower linear cuts cannot close the gap, but nonlinear
ones may do. Question: how can we compute valid and tight
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Note that lower linear cuts cannot close the gap, but nonlinear
ones may do. Question: how can we compute valid and tight
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nonlinear cuts?

The function bellow will be used to illustrate the SLDP

—— Loose cut
—— Opt. Value

Note that lower linear cuts cannot close the gap, but nonlinear
ones may do. Question: how can we compute valid and tight
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Let f : R — R be a function. How do we find the vertical

S. Ahmed

e translation « so that a given function g : R®™ — R translated
by o under-approximates f7

Nonlinear g(x)+a < f(fL'), V:C S RTL <

Lagrangians

We have a few options for a:

Case | Property on the translation of g
a < a* | g(z) + ais a loose under-estimate for f
a = a* | g(z) + « is the tightest lower approximation of f(x)
a > a* | g(T) + « is greater than f(Z) for some T € R”
a* = —oo | vertical translations of g never under-estimate f




Nonlinear Lagrangians

ey Now, let ® = {¢,(z) | y € Y} be a family of functions
S. Ahmed paremeterized by Y. We define the ®-hull of f(x) as the

F. Cabral

B.F. P.C pointwise supremum of all under-approximations a + ¢ (x):
¥ Oé+(,25y(l') Sf(x)a

onlinear = .

ragrangians f(x) aESH{L,l"E)GY {a + ¢y (x) ‘ Vfl? € RTL



Nonlinear Lagrangians

ey Now, let ® = {¢,(z) | y € Y} be a family of functions
S. Ahmed paremeterized by Y. We define the ®-hull of f(x) as the

F. Cabral

B.F.P.C pointwise supremum of all under-approximations a + ¢ (x):
> a+ oy(x) < f(x),
onlinear = .
ragrangians f(x) aESH{L,l"E)GY {a + ¢y (x) ‘ Vfl? € RTL

We can simplify more this formula. Consider

a(y) = inf [f(x) — ¢y (2)],

TeR”

then the ®-hull of f can be represented as

F(@) = sup aly) + ¢,(x).

yeY

We call a(y) the ®-Lagrangian dual function of f.
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then we have the standard-Lagrangian dual function

a(y) = inf f(z) — y'z

zeR”

and the convex-hull function

fx)= sup aly) +y'z
yeR™
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then we have the proximal-Lagrangian dual function

aly) = inf @) + Lo —y)?

zeR”

and the proximal-hull function

. p
f@) = sup a(y) = Sl —yl*
yeR™
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then we have the  sharp-Lagrangian dual function

a(y) = inf f(z) — yiz + p|z — yul.

reR”

and the  sharp-hull function

f@)= sup aly) + yiz — p|z — yul.

yER""’”
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S, Ahmed If f is Lipschitz continuous with constant L, then the sharp-hull

B.F. P C satisfies strong duality with p > L.
25 e Sharp Hull - p = 0.7 25 e Sharp Hull - p = 2.0
—— Opt. Value —— Opt. Value
Nonlinear 20 20
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-3 -2 -1 0 1 2 ) -2 -1 0 1 2

(a) p<L (b)p=L

Question: how to use these ideas in practice?
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Stochastic Lipschitz Dynamic Programming (SLDP)

SLDP

T In terms of algorithm, the SLDP is pretty similar to the SDDP
B.F.P. C method, but instead of computing linear Benders cuts in the
backward step we compute nonlinear sharp cuts (Augmented

Lagrangian cuts):

/(@) = max {Q) (@), af ") + i@ — o — vl

where ﬁf(x) is the cost-to-go approximation and @f (y¥) is the
sharp-Lagrangian dual function of stage ¢ and iteration k.

How can we use nonlinear cuts in a “tractable” way?
Answer: The reverse norms —| - ||; and —| - ||, are MILP
representable on a compact polyhedron.
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Stochastic Lipschitz Dynamic Programming (SLDP)

SLDP

S. Ahmed Actually, the reverse norms —| - |; and —|| - | are the only
F. Cabral . .
B.F.P.C MILP representable reverse £, norms for dimension n > 2

[Lubin-2017].

Let's build our intuition for the one-dimensional case:

v = —|{E|, _
e | 220w )
’y?—(w++$—), $:$+—LE—,
(z,7) 0<zt<z-a, 0<z <(1-2)-a
$+,I£_ = 07 z e {0,1}

We can use MILP solvers to compute the forward step of the
SLDP method.
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SLDP The convergence of the SLDP algorithm is also similar to the
S. Ahmed convex case, and it is based on the convergence lemma:
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B.F. P. C . —k J—
lim 9y (2}) = Qy(x7),
kel

where {zF}1cxc is a convergent subsequence of policy states
obtained in the forward step at stage ¢.

| SB SDDiP 0.01 SLDP tents SLDP ALD

LB [ 1.167 2370 3.073 3.085
UB | 3.453 3.490 3.320 3313
time (s) | 12 3317 558 605

Table: Results for an 8-stage non-convex problem




Future work

SLDP

A proof or a counter-example for the convergence of the SLDP

= Ll algorithm in the general MILP setting where the Complete

F. Cabral

B.F.P.C Continuous Recourse condition do not hold.
T2 —c f(b)
A D

Future work

S~. |laTz =0
—3 T1

(a) Feasible set

general MILP case.

b b
(b) MIP Value function

Feizollahi-2017 proves strong duality for the Sharp-family in the



Future work

SEO8 A proof or a counter-example for the convergence of the SLDP

= Al algorithm in the general MILP setting where the Complete

F. Cabral

B.F.P.C Continuous Recourse condition do not hold.
) e f(b)
A D
—‘O
Future work
~.. x*
A 5%
~ o .—
~~~\ aTw = b*
> b b
(2a) Feasible set (b) MIP Value function

Feizollahi-2017 proves strong duality for the Sharp-family in the
general MILP case.



Future work

SEO8 A proof or a counter-example for the convergence of the SLDP

= Al algorithm in the general MILP setting where the Complete

F. Cabral

B.F.P.C Continuous Recourse condition do not hold.
) e f(b)
A D
— 0
x*

Future work

> T1

b b
(a) Feasible set (b) MIP Value function

Feizollahi-2017 proves strong duality for the Sharp-family in the
general MILP case.



Future work

SEO8 A proof or a counter-example for the convergence of the SLDP

= Al algorithm in the general MILP setting where the Complete

F. Cabral

B.F.P.C Continuous Recourse condition do not hold.
) e f(b)
A D
ar* - 5

Future work T "
S~ |axz=0

~

L —
> T b:* b
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general MILP case.
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