Hydrothermal scheduling using affine rules

Rodrigo Novaes

rnovaes@psr-inc.com

Joaquim Dias Garcia, Guilherme Machado, Gerson Couto, Mario Veiga Pereira, Bernardo Bezerra

PSR

PSR integrates **consulting studies**, develops advanced **analytical tools** and research of new methodologies on **energy systems**

Our team has **85 people** with degrees in optimization, energy systems, statistics and computer/data science

We work in more than **70 countries** in all continents

See our 2018 retrospective **here**

The context and the problem we want to solve

- ▶ Hydrothermal operation is a well-known large-scale and real-life application of Stochastic Programming
- ► Some challenges are:
 - Decision has to be made **before** knowing the real net load
 - The variability and the non-linear relationships of renewable sources
 - Time coupling constraints (ramp rates, min. uptime and downtime, outflows,...)
- ► The **conceptual** problem is

Minimize Total costs

s.t. Hydro balance
Load balance
Operational constraints
(unit commitment, generation and ramp constrains ...)

The proposed framework

CLUSTERING THE SCENARIOS

- Calculate the deviations in net demand
- Clustering by severity
- Clustering for different regions

WEIGHTING THE SCENARIOS

- What scenarios are more meaningful?
- Modeling the decrease of the prediction power accross time

THE AFFINE RULES

 As simple as that: swap the actual variables by linear functions of the uncertain parameters

The affine rules

What is it?

▶ We'll start from the sample average approximation stochastic programming problem

$$Minimize \frac{1}{|\Psi|} \sum_{\psi \in \Psi} \sum_{t=1}^{T} c'_t x_t$$

s.t.
$$Ax_t(\psi_t) \leq b(\psi_t) \quad \forall \, \psi_t \in \Psi$$

▶ The whole idea is to transform that problem into this one

$$Minimize \frac{1}{|\Psi|} \sum_{\psi \in \Psi} \sum_{t=1}^{T} c'_t \left(\alpha_t \psi_t + \beta_t \right)$$

s.t.
$$A(\alpha_t \psi_t + \beta_t) \le b(\psi_t) \quad \forall \, \psi_t \in \Psi$$

The affine rules

How to use them in hydrothermal scheduling?

- ► Somehow you must get a group of **net load** scenarios
- ► Choose a **reference** scenario and solve the **original** problem
- ▶ Using the decisions made to this reference scenario, construct the affine rules to the other scenarios
- \blacktriangleright For example, suppose a load balance equation for the scenario s_0 :

$$g^0 + \rho \times u^0 = d^0$$

► For a given *s* scenario you could write:

$$\alpha_1(d^s - d^0) + g^0 + \rho \times [\alpha_2(d^s - d^0) + u^0] = d^s$$

The affine rules

Why did we do that?

- ► **Reduce** the number of variables and **complexity** (i.e., computational time)
- ► That's a way to solve a multistage stochastic hydrothermal scheduling problem with unit commitment
- ▶ If the net load **scenarios change**, under some conditions, you can still **use the same set** of affine rules already calculated to obtain the generation levels
- ▶ It's **like** if you could calculate the **basis** of this problem, as you can in linear programming:

$$x_b = B^{-1} \times b$$

Clustering the scenarios

▶ Why is it necessary?

Because the variability of the renewables can make the problem infeasible

► How did we do that?

Step 1: Calculate the deviations in **net demand** for each time step and scenario s, comparing to s_0

Step 2: Using theses deviations, calculate a scalar, for each scenario

Step 3: Group the scalars (use *k-means* if there is more than one area)

Step 4: Solve the optimization problem for each of the clusters

Clustering the scenarios

50 scenarios from the Chilean system: 2 areas and 2 clusters

Weighting the scenarios

► Why is it necessary?

Because your scenarios set could be not so large as we are used to deal with in the long term planning

► How did we do that?

Calculating a Gaussian distribution for a **given scenarios set** and applying it to each scenario at each hour where μ_0 is the mean and ω_0 is the standard deviation of the reference scenario. d_h^i is the **net load** for the **system** and σ_h^i is the weight for scenario *i* and hour *h*.

$$f(x) = \frac{1}{\omega_0 \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu_0}{\omega_0}\right)^2} \qquad \qquad \sigma_h^i = \frac{f(d_h^i)}{\sum_s f(d_h^s)}$$

▶ You may also model that the **accuracy** of net load **forecasts decreases** as we increase the time horizon

References

- ▶ Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs. Mathematical Programming, 99(2), 351–376. https://doi.org/10.1007/s10107-003-0454-y
- ▶ Egging, R., Fleten, S.-E., Gronvik, I., Hadziomerovic, A., & Ingvoldstad, N. (2017). Linear Decision Rules for Hydropower Scheduling Under Uncertainty. IEEE Transactions on Power Systems, 32(1) 103–113. https://doi.org/10.1109/tpwrs.2016.2555360
- ▶ Rocha, P., & Kuhn, D. (2012). Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules. European Journal of Operational Research, 216(2), 397–408. https://doi.org/10.1016/j.ejor.2011.08.001
- ► Garcia, J. "Simulating Power Systems by Solving Millions of MIPs". ISMP 2018, Bourdeaux, France. https://www.psr-inc.com/app/link/?t=d&f=Joaquim_BDX_genesys_v3.pdf

- www.psr-inc.com
- psr@psr-inc.com
- +55 21 3906-2100

- /psrenergy
- @psrenergy
- @psr_energy

Thank you!

Appendix

Some information about the Genesys project

The Pacific Northwest system

▶ Plants to be represented

76 hydros (38 reservoirs), 133 thermals

339 non-dipatchable plants (including renewables)

Network

DC optimal power flow, 34 nodes, 74 circuits

Big challenges

► 54 million MIPs problems

Daily/weekly operation with hourly resolution

- ▶ 6000 scenarios (8760 hours each)
- ► Distributed processing

500 servers

▶ Distributed storage

10 Tbytes for results and statistics

▶ In 8 hours!

Some information about the Genesys project

