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OUTLINE 

 Stochastic programming/optimization tools for expansion  

   and operation planning of the large-scale Brazilian system 

 Challenge #1: Handling risk averse problems  

 Challenge #2: Sampling backward SDDP scenarios  

 Challenge (aspect) #3: Resampling forward SDDP scenarios  

 Challenge #4: Trade-off between system Representation  
                           and quality of the results 

 Challenge #5: Performance requirements 

 Challenge #6: Handling high uncertainty/variability of  
                           intermittent sources 

 Bonus: Validation of DESSEM model for hourly prices in Brazil 
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Stochastic programming / 
optimization tools for expansion 

and operation planning of the 
large-scale Brazilian system 
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source: 
www.ons.org.br 

GENERATION MIX – 2016 & 2021 

BRAZILIAN INTERCONNECTED 
SYSTEM (SIN)  

WIND HYDRO GAS/LNG FOSSIL 

OTHERS NUCLEAR SOLAR BIOMASS 



From theory to practice: challenges in providing stochastic  
optimization tools for the energy  planning of real systems 

ILAS| July 2019 5 

4 000 

km 

 

 

 

 

 

 

 

 

Sistem

as 

Stand-

alones  

 

4 000 

km 

4 000 

km 

MAIN CHARACTERISTICS OF THE 
BRAZILIAN SYSTEM 

 Large-scale system, predominantly hydro 

 Stochastic inflows to reservoirs 

 Long distances between generation sources and load 

 Many hydro plants in cascade 
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BRAZILIAN INTERCONNECTED 
SYSTEM (SIN) – HYDRO PLANTS 

source: 
www.ons.org.br 

162 hydro plants  
centrally dispatched 
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HYDROTHERMAL PLANNING FOR THE 
BRAZILIAN INTERCONNECTED SYSTEM 

Developed by CEPEL, 
collaborating with 
scientific comunity 

Validated in 
working groups in 
by ONS, CCEE, EPE, 

MME, ANEEL, as 
well as task forces 
with most power 
system utilities 

Approved for official 
use by the regulatory 

energy 

       Used by: 
- EPE to plan the system 

- ONS to dispatch plants 

- CCEE for market prices  
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LONG, MID AND SHORT TERM 
GENERATION PLANNING 

NEWAVE 

DECOMP 
DESSEM 

SDDP 

DDP  
MultiStage Benders  

Decomposition 

[Maceira,Penna, 
Diniz,Pinto,Melo, 

Vasconc.,Cruz,18] 

[Maceira,Duarte, 
Penna,Mor,Mel,08] 

[Diniz,Costa,Maceira, 
Santos,Brandao,Cabral,18] 

[Diniz,Souza, 
Maceira et al,02] 

[Diniz, Santos, 
Saboia, Maceira,18] 

[Pereira,Pinto,91] 
[Maceira,93] 

[Birge,85] 

MILP 

Application of CVaR  

Risk Averse Mechanism 

[Shapiro,Tekaya, 
Costa,Soares,12]  

[Diniz, Tcheou, 
Maceira, 12] 

HYDROTHERMAL PLANNING FOR THE 
BRAZILIAN INTERCONNECTED SYSTEM 
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CONSTRAINTS 

OBJECTIVE FUNCTION 

Demand balance 

Water conservation 

Thermal generation + load schedding 

+ Many other operation constraints... 

SCENARIO TREE 

SELECTIVE SAMPLING 

[Penna,Maceira,Damazio,11] 
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[Maceira, 
Bezerra,97] Par-P model 

MULTI-STAGE STOCHASTIC LINEAR PROGRAMMING PROBLEM 

[Birge,Louveaux,97]  

 [Kall,Mayer,10] 

LONG TERM MODEL – NEWAVE 
Problem Formulation 
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SDDP - STOCHASTIC DUAL DYNAMIC PROGRAMMING 
[Pereira,Pinto,91] 

OUTPUT: 
Optimal Operation Policy 
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MID-TERM MODEL - DECOMP 

Future cost function 
(FCF) provided by 
long term model 
(NEWAVE) 

 Weekly steps for the 1st month 

 Monthly steps for the following months, with several water inflow scenarios 

 Several load blocks for each time step 

 Coupling with long term model takes into account history of the system 

System state 

cost 
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Challenge #1:  

Handling risk-averse problems  
in large-scale systems 
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APPLICATION TO MULTISTAGE  
HYDROTHERMAL PLANNING 

CVAR RISK MEASURE  
APPLIED TO SDDP (2013) 

[Philpott, 
de Matos,12] 

[Shapiro,10] 
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BACKWARD PASS 

 Build Benders cut with 
   both expected value  
   and risk averse terms 
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 identify the scenarios 
   related to the % highest 

   values of zt, 

  solve subproblems for all  
    bacward scenarios  

[Shapiro,Tekaya, 
Costa,Soares,12]  

DIRECT APPLICATION OF NESTED CVAR  
RISK-AVERSE CRITERION 

[Diniz, Tcheou, 
Maceira, 12] 

CVAR RISK MEASURE  
APPLIED TO SDDP (2013) 
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RISK AVERSER SURFACE – SAR 
(2013) 

Feasibility cuts  
(SAR constraints) 

Shared cuts 

Deterministic subproblem 

 

(critical scneario, several months ahead) 

SAR level Storages at the end of 
time step t 

months 

Scenarios in the 
NEWAVE model 

Benders Decomposition  
2 stages 

 Explicit protection against critical scenarios 
[PSR,08] 

 Novel penalization scheme to avoid a large increase 
in system marginal costs => Maximum violation 
along each year  

Storage (SE) 
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[Diniz, Maceira, 
Vasconc., Penna,14] 

[Diniz,Maceira, 
Vasconc., Penna,16] 
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SOME NOTES ON CHOOSING THE BEST 
POLICY IN RISK AVERSE PROBLEMS 

 Yielding the least cost is not anymore a criterion to select 
the most suitable policy 

 A multiciterion analysis has to be conducted making an out-of-
the sample assessment for different hydrological and system 
conditions of many aspects such as: 

 Thermal generation costs  
X deficit risk (costs) 

 Distribution of energy  
not served (ENS) 

 Probability of spillage 

 Evolution of the storage  
of the reservoirs 

[Maceira, Marzano,  
Penna, Diniz, Justino,14 

 Deficit costs (106)  

Thermal generation costs (106)  

CVar Model parameters 
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Challenge #2:  

Sampling backward SDDP 
scenarios  
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SOME NOTES ON BACKWARD  
SCENARIO GENERATION 

 In sample average approximation (SAA) algorithms, usually a  
random (Monte Carlo) sampling is recommended to generate 
scenarios, in order to have more diversity 

 Many replications of the scneario tree should be performed  

 However, the problem can only be solved ONCE 

 The use of random sampling in backward scenarios makes the 
results very sensitive to the seed used to generate scenarios 

          Therefore, it is recommended to use clustering techniques  
            when generating backward scenarios, even though the  
            value of the optimal solution may be (a bit) biased 

       Also, while clustering, picking the centroid as  
           representative of each cluster (instead of the closest  
           object to the centroid) brings more stable results 
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MEAN 

S.D. 

SELECTIVE SAMPLING (2009) 
(K-MEANS) 

MONTE CARLO 

 Inflow values at each time step, for different seeds 

SCENARIO GENERATION:  
MONTE CARLO x CLUSTERING 

[Penna, Maceira,  
Damazio, 11] 
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 Lower bound for the optimal solution 

SCENARIO GENERATION:  
MONTE CARLO x CLUSTERING 

MONTE CARLO SELECTIVE SAMPLING  
(K-MEANS) 
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Challenge (aspect) #3:  

Resampling Forward SDDP 
scenarios  
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 OBJECTIVE: To allow a more representative part of the 
HUGE multi-stage scenario tree to be visited 

 

 

 

 

 

 

 

 

 SDDP convergence has been proved once forward 
resampilng is performed 

 Philpott e Guan [2007] - On the convergence of stochastic dual dynamic 
programming and related methods. Operation Research Letters 36 (4) – 450-455 
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RESAMPLING - RESULTS FOR 
DIFFERENT SEEDS (1/2) 

FULL  
RESAMPLING 

RECOMBINING  
SAMPLING 

No  
resampling 

LOWER BOUND FOR EACH SEED 

k = 1            2          3                  1           2           3 

Resampling  
step  

(each k 
 iterations) 
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SOME NOTES ON FORWARD 
RESAMPLING 

What we OBSERVE from  
historical record in t=1 

t=1 t=2 

$ 

V 

 The main objective of NEWAVE model is NOT TO SOLVE THE 
DISCRETE MATHEMATICAL PROBLEM, but rather to OBTAIN 
AN OPERATION POLICY for the CONTINUOUS PROBLEM  

exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 
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t=1 t=2 

Our model of the hydro  
inflows for t=1 

V 

$ 

 The main objective of NEWAVE model is NOT TO SOLVE THE 
DISCRETE MATHEMATICAL PROBLEM, but rather to OBTAIN 
AN OPERATION POLICY for the CONTINUOUS PROBLEM  

exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 

SOME NOTES ON FORWARD 
RESAMPLING 
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Our backward sample of the  
hydro inflows for t=1 

t=1 t=2 

$ 

V 

 The main objective of NEWAVE model is NOT TO SOLVE THE 
DISCRETE MATHEMATICAL PROBLEM, but rather to OBTAIN 
AN OPERATION POLICY for the CONTINUOUS PROBLEM  

exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 

SOME NOTES ON FORWARD 
RESAMPLING 
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 The main objective of NEWAVE model is NOT TO SOLVE THE 
DISCRETE MATHEMATICAL PROBLEM, but rather to OBTAIN 
AN OPERATION POLICY for the CONTINUOUS PROBLEM  

t=1 t=2 

$ 

V 

Approximation of the FCF if forward samples 
are taken from the continuous distribution 

exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 

SOME NOTES ON FORWARD 
RESAMPLING 
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$ 

V 

t=1 t=2 

Approximation of the FCF if forward samples 
are taken from the continuous distribution 

Approximation of the FCF if forward samples 
are taken from backward scenarios 
(much smaller number of visited states) 

 The main objective of NEWAVE model is NOT TO SOLVE THE 
DISCRETE MATHEMATICAL PROBLEM, but rather to OBTAIN 
AN OPERATION POLICY for the CONTINUOUS PROBLEM  

exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 

SOME NOTES ON FORWARD 
RESAMPLING 
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$ 
exact FCF for t=1 of the mathematical problem 
(depends on green scenarios in t=2) 

Approximation of the FCF if forward samples 
are taken from the continuous distribution 

Approximation of the FCF if forward samples 
are taken from backward scenarios 
(much smaller number of visited states) 

 Which one is the best policy for t=1? 

 The red points are enough to find the optimal solution for the 
mathematical problem (red + green scenarios) 

 However, we know this is NOT the true problem: we should be 
prepared for the “real” continuous distribution 

 So, why do we use a discrete backward distribution?  

 we must set a tractable and exact mathematical problem 

 

SOME NOTES ON FORWARD 
RESAMPLING 
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The main objective of NEWAVE model is not to solve the 
problem, but rather to obtain an operation policy 

 With such policy it is possible to simulate a large number of 
scenarios in order to obtain proper statistics for system operation: 

 Average System Marginal costs 

 Average thermal generation 

 Average storage in the reservoirs along time 

 Deficit risk and average load curtailment 

 Average spillage 

 The policy should be “good” for ANY SET OF SCENARIOS IN 
THE CONTINUOUS DISTRIBUTION of the random variable 

        Therefore, for practical applications, we sample the forward  
    scenarios from the continuous distribution, rather than  
    the set of backward noises, even though this is a theoretical 
    requirement to find the optimal solution of the mathematical  
    problem (our aim is NOT to find it!!) 

                

SOME NOTES ON FORWARD 
RESAMPLING 
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Challenge #4:  

Trade-off between system 
Representation and  
quality of the results  
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MODELING OF EQUIVALENT 
RESERVOIRS IN THE LONG TERM 

[Arvanitidis, 
Rosing,70]   

[Maceira,Duarte, 
Penna,Tcheou,11] 

[Terry,Maceira, 
Mercio,Duarte,04] 

 Individual aspects are modeled as much as possible 

 Loss of efficieny with the water head 

 Inflows/spillage in run of the river plants, etc. 

 

4 System 
Areas 

12 EERs 

AM 

PP 

Thermal plants 

tie lines 

hydro coupling 
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INCREASE IN THE REPRESENTATION  
OF THE HYDRO SYSTEM ALONG TIME 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

JAN FEV MAR ABR MAI JUN JUL AGO SET OUT NOV DEZ

Mean Energy Inflows (MWmonth)

paranapanema REE parana REE

 The main goal is to capture diversity  
   of the hydrological behaviour, while  
   still keeping a lower state space 

 Due to market aspects, the number of 
    market areas is kept 

 

 

 The increase in the number of EERs is based  
   on comprehensive studies performed by   
   CPAMP (ONS,CCEE,EPE,MME,ANEEL,CEPEL) 

 until 2015: 4 EERs 

 2016: 9 EERs 

 2018: 12 EERs 

[de Matos,  
Finardi, Silva, 08] 

[Ennes, Penna,  
Maceira, Diniz, 

Vasconcellos,11] 
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HYBRID INDIVIDUAL / EER 
REPRESENTATION IN NEWAVE 

 Allows NEWAVE model to represent the hydropower plants  
   individually in the entire or in part of its planning horizon 

 Takes advantage of both modellings, without increasing too  
    much the computational effort by considering: 

 the benefits of an individual representation of HPPs in the  
   horizon closer to the operational decision making 

 as many EERs as necessary to represent the hydrological  
    diversity among the river basins, in the later stages 

Planning Period
(5 to 30 years)

Post Period
5 anos

Energy Equivalent Reservoirs - EERs

EERsIndividual HPPs

Original NEWAVE

Hybrid NEWAVE

User-defined cutoff point

User-defined cutoff point
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SOME NOTES ON SYSTEM 
REPRESENTATON 

 From the system modeling point of view, the consideration of individual 
reservoirs in SDDP itself is not a challenge 

 Constraints are similar (and simpler) than mid/short term models, and 
the construction of Benders cut in DDP or SDDP is similar 

 Modeling of random variables (e.g. past inflows) for individual plants is 
more involving, due to its high dimensionality and the statistical model 
(overparametrization, spatial/serial correlations...) 

 One major aspect is the trade-off between system representation  
and the quality of the results 

 It is not enough to simply run a number of SDDP iterations: it is VERY 
important to make sensitivity analysis on the final simulation results  

 A critical issue is the quality and impact of the detailed data related to 
system components and constraints in the long term 

 It is not possible to satisfy all constraints in all future scenarios: in 
practice, some constraints are adjusted according to the system state, 
and one cannot simply discard violated scenarios 

 Aggregate constraints may be more effective in the long run 
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Challenge #5:  

Performance Requirements 
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COMPUTATIONAL EFFICIENCY AND 
QUALITY OF THE RESULTS 

Parallel processing 

Reproducibility of the 
results 

 The results should be identical  
   regardless of the machine and  
   number of parallel processors  

Solving strategy for economic 
dispatch subproblems 

 warm starts 

 optimal simplex basis recovery (LPs) 

 dynamic piecewise  
   linear models 

 cut selection 

 MIP: Local branching 

Programs are 
heavily tested 

Strict validation process 

 CPAMP committee 

 Task forces for each model 

 + 300 users 

[Pinto, Borges, 
Maceira,13] 

[Matos, Philpott, 
Finardi,13] 

[Saboia,Lucena,11] 

[Fischetti, Lodi,03] 

[Diniz,Ennes, 
Cabral,12] 

Number of processors 
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Challenge #6:  
 

Handling high 
uncertainty/variability of 

intermittent sources  
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MODELING OF RENEWABLE 
GENERATION – SHORT TERM 

 Intermittent renewabel generation turns the traditional  
   deterministic unit commitment model into a stochastic unit  
   commitment model 

 wind generation has to be represented  
    as interruptible generation, for feasible  
    AND economic reasons 

 reliable models for scenario  
   generation of wind  
   production should be  
   developed 

[Cotia, Borges,Diniz, 19]  

Wind speed 

Power  
generation 

[Pessanha et al,18]  
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MODELING OF RENEWABLE 
GENERATION – LONG TERM 

“SOFT LINK” 

NEWAVE MELP 

. . . Scenarios 

NEWAVE FCF Representative day/week 

 integration between long term and short term models 

DESSEM 

“feedback” “feedback” 

“HARD LINK” 

[Deane, Chiodi, 
Gargiulo, 12]  

[Pina, Silva, 
 Ferrão, 13]  

 directly represent hourly operation constraints in the  
   long term model [Deane, Chiodi, 

Gargiulo, 12]  
[Pina, Silva, 
 Ferrão, 13]  

[Tejada-arango 
Domeshek,  Wogrin 18]  
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This list of challenges is  
BY FAR not exhaustive: 

 How to make SDDiP practical? 

How to better handle long tem uncertainties? 
  (e.g. load growth) 

 How to better address short range uncertainties on  
   intermittent generation? 

 Consideration of climate changes 

 etc, etc, etc. 
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Validation of DESSEM model for 
hourly prices in Brazil 
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DETAILED REPRESENTATION OF THE ELECTRICAL NETWORK 

System Areas 

Hydro Plants 

Thermal Plants 

Power injections 

loads 

Interchanges among areas 

Transmission lines 

River courses 

[Diniz,Santos, 
Saboia,Maceira,18] 

B 

N 

NE 

SE 

S 

IT 

IV 

remaining days 

DECOMP 
FCF  

Half-an-hour / hourly intervals Larger  
intervals 

1-2 days 

DETAILED SYSTEM 
REPRESENTATION 
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HYDRO PLANTS  
PRODUCTION FUNCTION 

VARIATION OF EFFICIENCY WITH THE WATER HEAD 

Q 

V 

hdw 

S 

GH 

hup 

 

AHPF V, Q, S GH 
[Diniz,Maceira,08] 
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Modeling of 
river sections 

HYDRO PLANTS IN CASCADE 

HYDRO CONSTRAINTS 

Filling of “dead 
volumes” 

Multiple uses of 
water 

Flood control 
constraints 

Minimum releases 

pumping stations 

channels between  
reservoirs 

Evaporation in reservoirs 
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RIVER ROUTING 

 Representation of water propagation curves along the river courses 
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NONCONVEX THERMAL UNIT 
COMMITMENT CONSTRAINTS (1/2) 
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MODELING OF  
COMBINED –CYCLE PLANTS 

 Application of a hybrid component/mode model 

 Constraints can be individually enforced  
   for the thermal units 

 transition requirements between configurations 
   can be included 

 Linking constraint between units  

   status      and configuration modes [Liu,Shahidehpour, 
Li,Mahmoud,09] 

[Morales-Espana, 
  Correa-Posada, 
  Ramod,16] 
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Line Flow limit constraints 
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ADDITIONAL SECURITY 
CONSTRAINTS 
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   flows in given lines of the  
   system for security purposes 

PIECEWISE LINEAR 
CONSTRAINTS 

 some constraints are  
   given by tables 

HEURISTIC ITERATIVE 
APPROACH 



From theory to practice: challenges in providing stochastic  
optimization tools for the energy  planning of real systems 

ILAS| July 2019 58 

 TTt

i

T

t

NUT

i

t

ii VSgtcmin  
 1 1

)(
s.a. 

  t

i
j

t

ji

t

ij
j

t

j
j

t

j
DIntIntghgt

iii

 



 

i = 1,…,NS, t = 1,…,T,  

t
ii

t
i

t
ii ugtgtugt 




 
iMj

t

j

t

j

t

i

t

i

t

i

t

i

t

i
SQSQIVV )()(1

),,( t

i

t

i

t

i

t

i SQVFPHgh 

,t

i

t

i

t

i VVV  ,t

i

t

i

t

i QQQ  ,t

i

t

i

t

i ghghgh 

i = 1,…,NH, t = 1,…,T,  

i, j = 1,…,NL , t = 1,…,T 

E 

H 

T 

Demand 

Electrical  
network 

Water  
balance 

AHPF 

Operative 
constraints 

 + MANY more 
constraints... 

)( 1
1





 t

i
t
ii

Tont

tk

k
i uuTonu

i

)()1( 1
1

t
i

t
ii

Tofft

tk

k
i uuToffu

i
 





i = 1,…,NUT, t = 1,…,T,  

 1,0t
iu

rhsdgpfdg
NB

i

iiliil

NB

i

iili      )( ;      )( 
1

,

1

,  




H T 

TRANSMISSION 

LOAD 

MIXED INTEGER (PIECEWISE) LINEAR PROGRAMMING 

Termal  
constraints 

 
Unit  

Commitment 

OVERALL PROBLEM  
FORMULATION 

  t
i

t
i

t
ii SuuCs 1t

i

t

tk

k
i

t
ii SuuCe 













  



 t

i

t

i

t

i

t

i uuwy  1~~

1~~  t

i

t

i wy





































i

i

ii

ND

k

kt

iii

NU

k

kt

ii

ND

k

kt

i

NU

k

kt

i

t

ii

ykNDTrDn

ykTrUp

yyuGT

1

1

1

1

1

1

1

1

~)1(

ˆ)(

~ˆ





































i

i

ii

ND

k

kt

iii

NU

k

kt

ii

ND

k

kt

i

NU

k

kt

i

t

ii
t

i

ykNDTrDn

ykTrUp

yyuGTGT

1

1

1

1

1

1

1

1

~)1(

ˆ)(

~ˆ



From theory to practice: challenges in providing stochastic  
optimization tools for the energy  planning of real systems 

ILAS| July 2019 59 

Solving Strategy: MILP (1/3) 

ITERATIVE LP APPROACH TO FIND MAJOR / POTENTIAL 
BINDING CONSTRAINTS IN THE ELECTRICAL NETWORK 

Set the Multistage 
MILP Problem 

Solve Linear 
Relaxation (LP)  

Satisfy  
Network 

constraints? 

solve a DC load flow 
compute line flows 

Insert line flow 
limits constraints 

No 
Solve the MILP  

problem  

continue… 

Obtain a lower 
bound 

Yes 

[Diniz,Souza, 
Maceira et al,02] 

[Santos, 
Diniz, 11] 

 

[Stott, 
Marinho, 79 
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Solving Strategy: MILP (2/3) 

Fix the solution of 
integer variables  MILP solution 

(not feasible yet for the  

entire electrical network) 

ITERATIVE LP WITH FIXED UC TO OBTAIN A GOOD (?) FEASIBLE 
SOLUTION 

Solve LP  
(with a fixed UC) 

Satisfy  
Network 

constraints? 

solve a DC load flow 
compute line flows 

Insert line flow 
limits constraints 

No 
Compute optimality 

gap 

continue… 

Obtain an 
upper bound 

Yes 

Optimal  

SIMPLEX  

basis 
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Solving Strategy: MILP (3/3) 

Feasible MILP solution 

 

FINDING AN OPTIMAL SOLUTION WITH THE DESIRED ACCURACY 

optimality 
criterion is 

met? 

Yes 
Publish optimal 

solution 

No 

Proceed 
solving the 

MILP problem 
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RECENT DEVELOPMENTS: 
REDUCTION OF CPU TIMES 

 Use of tighter/more compact  
   unit commitment formulations 

 

[Morales-Espana,  
Latorre, Ramos, 13]  

 Taking into account optimal basis informationwhile adding new 
   constraints to the problem  in a MILP setting 

[Dam, Kucuk,  
Rajan, Atam, 13]  [Ostrowsku, 

Anjos,Vanneli, 13]  

   
 

 
 





}0:{}1:{

]1[,
vv

uv

v

uv

v
uuuu

Hamming Metric 

[Saboia, 
Diniz,16] 

[Fischetti, 
Lodi,03] 

 Alternative (better) interaction between MILP and  
   LP solving procedures 

 Application of local branching  
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DETERMINATION OF  
MARKET PRICES 

“Optimal 
“solution 
has been 
reached 

Fix 
commitent 
status of 
the units 

Solve a 
continuous 

hydrothermal 
scheduling 

problem 

Obtain 
multipliers 
for system 

area and line 
flow limits 
constraints 
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Multipliers of demand balance in each area 

Multipliers of line flow limits constraints 
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System are price as weighted average in all buses 

Obtain nodal prices for all buses of the system 
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154 REAL CASES FROM Jan 1st to Jun 13th   

#Hydro Plants:             158 
#Thermal Plants:             109 
#Network Buses:          6,800 
#Transmission Lines:   9,800 

PERFORMANCE RESULTS 
“shadow” operation – ONS 

   Average CPU time: 18.2min 
< 1 hour:   ~ 96% 

Presentation 


