

Robust Strategic Bidding in Day-Ahead Electricity Markets

Bruno Fanzeres¹

Shabbir Ahmed²

Alexandre Street¹

¹Pontifical Catholic University of Rio de Janeiro ²Georgia Institute of Technology

Workshop: Stochastic Programming Models and Algorithms for Energy Planning

Introduction

Objective: Present an alternative approach to devise bidding strategies in day-ahead electricity markets.

Challenge: Characterize the uncertainty on Rival competitors' bidding.

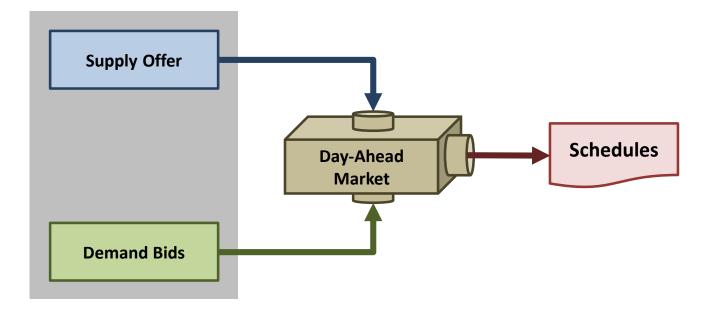
- Assume perfect information (deterministic approach) may lead to meaningless solutions;
- Construct a probability distribution to characterize strategic behavior is a very challenging task;

Contributions:

- 1. Present a novel risk-averse model based on robust optimization under polyhedral uncertainty set for devising optimal bidding strategies in sealed-bid uniform-price auctions with multiple divisible products
- 2. Provide a single-level equivalent formulation suitable for decomposition techniques suitable for based on available commercial solvers.
- 3. Develop an efficient solution methodology based on column-and-constraint generation (CCG) algorithm.

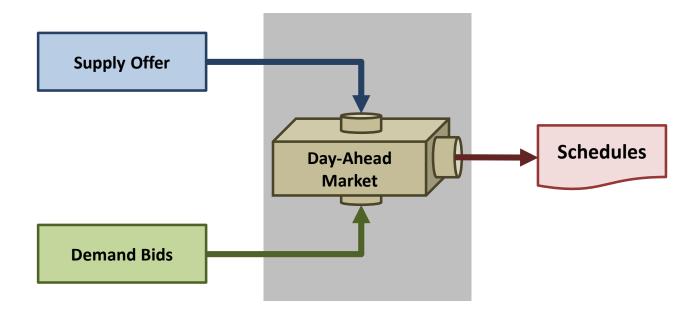
The general idea is simple:

- Participants submit buy (demand) and sell (producers) orders.
- The market is cleared by a central (system/market) operator.
- Denition of the uniform clearing price and amount due to each participant.



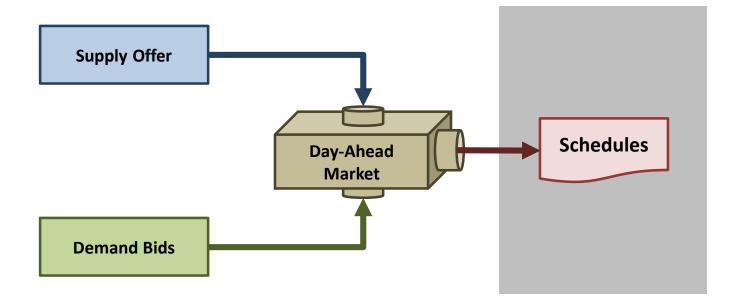
The general idea is simple:

- Participants submit buy (demand) and sell (producers) orders.
- □ The market is cleared by a central (system/market) operator.
- Denition of the uniform clearing price and amount due to each participant.

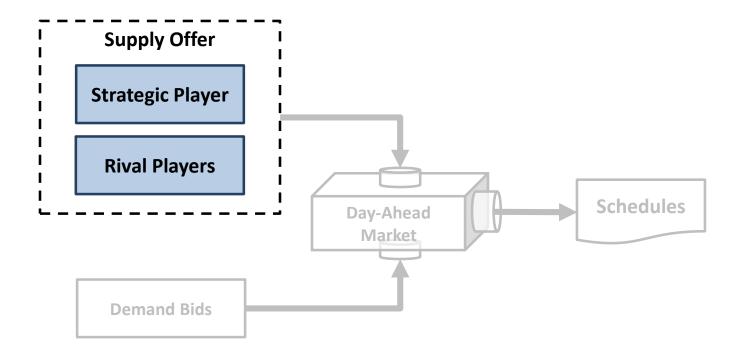


The general idea is simple:

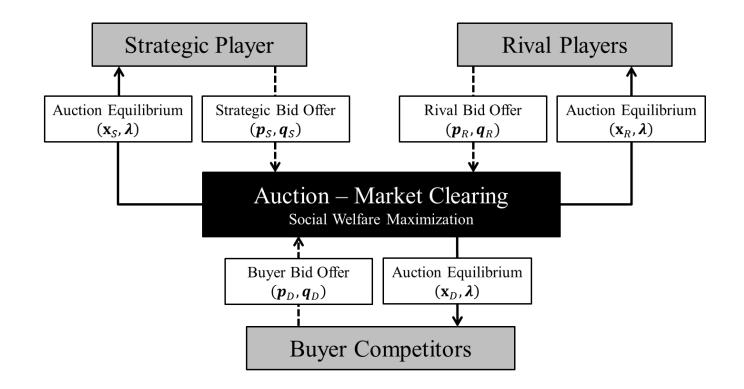
- Participants submit buy (demand) and sell (producers) orders.
- The market is cleared by a central (system/market) operator.
- Denition of the uniform clearing price and amount due to each participant.



- Our goal: develop a new methodology to devise a profit-maximizing strategic offer for a subset of supply companies, hereinafter called *Strategic Player*.
 - The remainders will be called *Rival Players*.



- **Our goal**: develop a new methodology to devise a profit-maximizing strategic offer for a subset of supply companies, hereinafter called *Strategic Player*.
 - □ The remainders will be called *Rival Players*.



The mathematical formulation of the day-ahead market assumes a single node network with (an a priori known) inelastic demand in a single-period setting.

$$\min_{\boldsymbol{g}^{S},\boldsymbol{g}^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} g_{i}^{R}$$

subject to:

$$\begin{split} &\sum_{j \in \mathcal{N}_{S}} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} g_{i}^{R} = d; \\ &0 \leq g_{j}^{S} \leq q_{j}^{S}, \\ &0 \leq g_{i}^{R} \leq q_{i}^{R}, \\ \end{split} \qquad \begin{array}{l} : \left(\overline{\lambda}_{j}^{S}, \underline{\lambda}_{j}^{S}\right) & \forall j \in \mathcal{N}_{S}; \\ &: \left(\overline{\lambda}_{i}^{R}, \underline{\lambda}_{i}^{R}\right) & \forall i \in \mathcal{N}_{R}. \\ \end{array}$$

The mathematical formulation of the day-ahead market assumes a single node network with (an a priori known) inelastic demand in a single-period setting.

$$\min_{\boldsymbol{g}^{\boldsymbol{S}},\boldsymbol{g}^{\boldsymbol{R}}} \sum_{j \in \mathcal{N}_{\boldsymbol{S}}} \boldsymbol{p}_{j}^{\boldsymbol{S}} \boldsymbol{g}_{j}^{\boldsymbol{S}} + \sum_{i \in \mathcal{N}_{\boldsymbol{R}}} \boldsymbol{p}_{i}^{\boldsymbol{R}} \boldsymbol{g}_{i}^{\boldsymbol{R}}$$

subject to:

Prices submitted to the auction – social welfare maximization

- $p_j^S \rightarrow$ Strategic player $(j \in \mathcal{N}_S)$ price offer;
- $p_i^R \rightarrow \text{Rival players } (i \in \mathcal{N}_R) \text{ price offer;}$
- $p_D \rightarrow$ Buyer (demand) price bid

The mathematical formulation of the day-ahead market assumes a single node network with (an a priori known) inelastic demand in a single-period setting.

$$\min_{\boldsymbol{g}^{S},\boldsymbol{g}^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} g_{i}^{R}$$

subject to:

$$\begin{split} &\sum_{j \in \mathcal{N}_{S}} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} g_{i}^{R} = d; \qquad :\lambda \\ &0 \leq g_{j}^{S} \leq \boldsymbol{q}_{\boldsymbol{j}}^{\boldsymbol{S}}, \qquad : \left(\overline{\lambda}_{j}^{S}, \underline{\lambda}_{j}^{S}\right) \qquad \forall \, \boldsymbol{j} \in \mathcal{N}_{S}; \\ &0 \leq g_{i}^{R} \leq \boldsymbol{q}_{\boldsymbol{i}}^{\boldsymbol{R}}, \qquad : \left(\overline{\lambda}_{i}^{R}, \underline{\lambda}_{i}^{R}\right) \qquad \forall \, \boldsymbol{i} \in \mathcal{N}_{R}. \end{split}$$

Quantity submitted to the auction – constrains the amount sold/bought for each player

- $q_j^S \rightarrow$ Strategic player $(j \in \mathcal{N}_S)$ quantity offer;
- $q_i^R \rightarrow \text{Rival players} (i \in \mathcal{N}_R)$ quantity offer;
- $p \hspace{0.2cm} q_{D}
 ightarrow$ Buyer (demand) quantity bid

■ The foundation of the business environment is a competitive market endowed with a sealed-bid uniform-price auction of multiple divisible goods formulated as a linear programming problem.

$$\min_{\mathbf{J}^{S}, \mathbf{g}^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} \mathbf{g}_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} \mathbf{g}_{i}^{R}$$

subject to:

$$\begin{split} &\sum_{j \in \mathcal{N}_{S}} \boldsymbol{g}_{\boldsymbol{j}}^{\boldsymbol{S}} + \sum_{i \in \mathcal{N}_{R}} \boldsymbol{g}_{\boldsymbol{i}}^{\boldsymbol{R}} = \boldsymbol{d}; \qquad : \lambda \\ &0 \leq \boldsymbol{g}_{\boldsymbol{j}}^{\boldsymbol{S}} \leq \boldsymbol{q}_{\boldsymbol{j}}^{\boldsymbol{S}}, \qquad : \left(\overline{\lambda}_{j}^{\boldsymbol{S}}, \underline{\lambda}_{\boldsymbol{j}}^{\boldsymbol{S}}\right) \qquad \forall \boldsymbol{j} \in \mathcal{N}_{\boldsymbol{S}}; \\ &0 \leq \boldsymbol{g}_{\boldsymbol{i}}^{\boldsymbol{R}} \leq \boldsymbol{q}_{\boldsymbol{i}}^{\boldsymbol{R}}, \qquad : \left(\overline{\lambda}_{i}^{\boldsymbol{R}}, \underline{\lambda}_{\boldsymbol{i}}^{\boldsymbol{R}}\right) \qquad \forall \boldsymbol{i} \in \mathcal{N}_{\boldsymbol{R}}. \end{split}$$

Optimal Economic Dispatch – auction solution

- $g_j^S \rightarrow$ Strategic player $(j \in \mathcal{N}_S)$ dispatch;
- $g_i^R \rightarrow \text{Rival players } (i \in \mathcal{N}_R) \text{ dispatch};$
- $d \rightarrow$ Buyer (demand) "responsive" consumption;

■ The foundation of the business environment is a competitive market endowed with a sealed-bid uniform-price auction of multiple divisible goods formulated as a linear programming problem.

$$\min_{\boldsymbol{g}^{S},\boldsymbol{g}^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} g_{i}^{R}$$

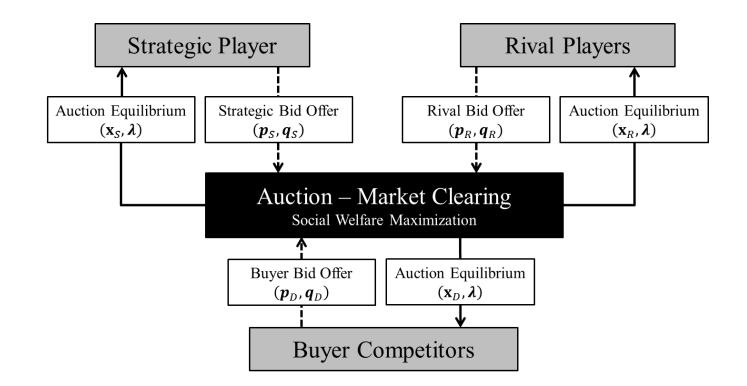
subject to:

$$\begin{split} &\sum_{j \in \mathcal{N}_{S}} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} g_{i}^{R} = d; \\ &0 \leq g_{j}^{S} \leq q_{j}^{S}, \\ &0 \leq g_{i}^{R} \leq q_{i}^{R}, \\ &0 \leq g_{i}^{R} \leq q_{i}^{R}, \\ \end{split} \qquad \begin{aligned} &: \left(\overline{\lambda}_{i}^{S}, \underline{\lambda}_{j}^{S}\right) & \forall j \in \mathcal{N}_{S}; \\ &: \left(\overline{\lambda}_{i}^{R}, \underline{\lambda}_{i}^{R}\right) & \forall i \in \mathcal{N}_{R}. \end{split}$$

λ : Clearing energy price – uniform price

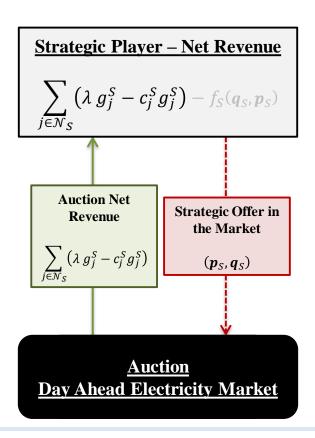
Profit-Maximizing Strategic Offer Problem

Major challenge: What is the optimal offer that maximizes the *Strategic Player* profit?



Strategic Player Net Revenue - Auction

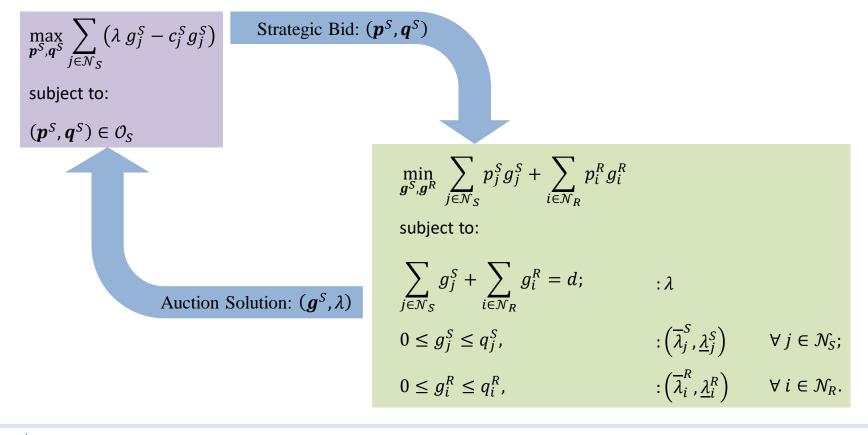
- The Strategic Player net revenue is composed by three terms:
 - 1. Day-ahead market revenue of strategic player (unit) $j \in \mathcal{N}_S$: λg_i^S
 - 2. Production (linear) costs of strategic player (unit) $j \in \mathcal{N}_S$: $c_j^S g_j^S$
 - **3.** Bid costs: $f_S(q_S, p_S)$



Bidding Problem – Scheme

Major challenge: how to bid into the market in order to maximize the strategic player profit?

Assuming a feasible bid region \mathcal{O}_S , the optimal bidding problem resumes to:



Slide 15

Profit-Maximizing Strategic Offer Problem

- Major challenge: how to bid into the market in order to maximize the strategic player profit?
- Let $\mathcal{M}(p^S, q^S, p^R, q^R)$ be a (non-empty) set of all optimal points g^S and respective dual variables λ of the auction problem.

 $\mathcal{M}(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}, \boldsymbol{p}^{R}, \boldsymbol{q}^{R}) = \{(\boldsymbol{g}^{S}, \lambda) \mid (\boldsymbol{g}^{S}, \lambda) \text{ solves the day-ahead problem}\}$

$$\mathcal{M}(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}, \boldsymbol{p}^{R}, \boldsymbol{q}^{R}) = \arg\min_{\boldsymbol{g}^{S}, \boldsymbol{g}^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} g_{i}^{R}$$

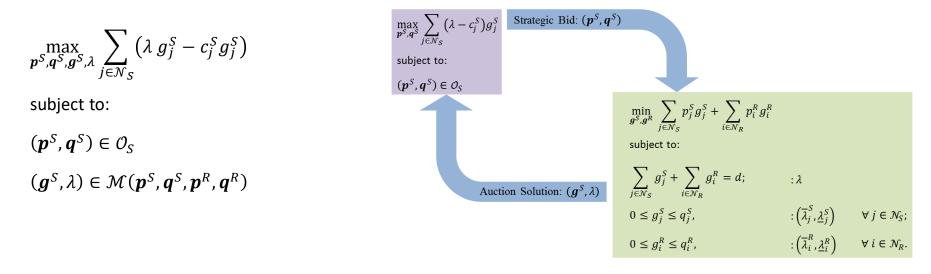
subject to:
$$\sum_{j \in \mathcal{N}_{S}} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} g_{i}^{R} = d; \qquad :\lambda$$
$$0 \leq g_{j}^{S} \leq q_{j}^{S}, \qquad :\left(\overline{\lambda}_{i}^{S}, \underline{\lambda}_{j}^{S}\right) \qquad \forall j \in \mathcal{N}_{S};$$
$$0 \leq g_{i}^{R} \leq q_{i}^{R}, \qquad :\left(\overline{\lambda}_{i}^{R}, \underline{\lambda}_{i}^{R}\right) \qquad \forall i \in \mathcal{N}_{R}.$$

Bidding Problem with Auction Solution

- Main question: how to optimally bid into the market in order to maximize the strategic player profit?
- Let $\mathcal{M}(\boldsymbol{p}_S, \boldsymbol{q}_S, \boldsymbol{p}_R, \boldsymbol{q}_R)$ be a (non-empty) set of all optimal points \mathbf{x}_S and respective dual variables $\boldsymbol{\lambda}$ of the auction problem.

$$\mathcal{M}(\boldsymbol{p}_{S}, \boldsymbol{q}_{S}, \boldsymbol{p}_{R}, \boldsymbol{q}_{R}) = \{(\mathbf{x}_{S}, \boldsymbol{\lambda}) \in \mathbb{R}^{N_{S}} \times \mathbb{R}^{M} \mid (\mathbf{x}_{S}, \boldsymbol{\lambda}) \text{ solves the auction problem}\}$$

We can write the bidding problem as follows:



Profit-Maximizing Strategic Offer Problem

- Major challenge: What is the optimal offer that maximizes the Strategic Player profit?
- Let $\mathcal{M}(p^S, q^S, p^R, q^R)$ be a (non-empty) set of all optimal points g^S and respective dual variables λ of the auction problem.

 $\mathcal{M}(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}, \boldsymbol{p}^{R}, \boldsymbol{q}^{R}) = \{(\boldsymbol{g}^{S}, \lambda) \mid (\boldsymbol{g}^{S}, \lambda) \text{ solves the day-ahead problem}\}$

We can write the bidding problem as follows:

 $\max_{\boldsymbol{p}^{S},\boldsymbol{q}^{S},\boldsymbol{g}^{S},\boldsymbol{\lambda}}\sum_{j\in\mathcal{N}_{S}}\left(\boldsymbol{\lambda}\;\boldsymbol{g}_{j}^{S}-\boldsymbol{c}_{j}^{S}\boldsymbol{g}_{j}^{S}\right)$

subject to:

 $(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$

 $(\boldsymbol{g}^{S},\lambda) \in \mathcal{M}(\boldsymbol{p}^{S},\boldsymbol{q}^{S},\boldsymbol{p}^{R},\boldsymbol{q}^{R})$

How to represent the uncertainty on Rivals' bidding variables (p_R, q_R) ?

Several works assume:

- perfect information (deterministic approach) or;
- available a probability distribution (stochastic approach).

- Given the set of the
- Let $(\tilde{p}_R, \tilde{q}_R)$ be the vector of uncertain rival price/quantity bids.
- The optimal bidding problem under uncertainty on rival's bid can be formulated as:

$$\max_{p_{S},q_{S},\tilde{x}_{S},\tilde{\lambda}} \Phi\left(\sum_{j \in \mathcal{N}_{S}} (\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S})\right)$$
subject to:
$$(p_{S}, q_{S}) \in \mathcal{O}_{S}$$
$$(g_{S}, \lambda) \in \mathcal{M}(p_{S}, q_{S}, \tilde{p}_{R}, \tilde{q}_{R})$$
$$\underbrace{\text{Uncertain Rival Bidding}}_{\text{Scenario } \omega_{1}} \underbrace{(p_{S}, q_{S}) \in \mathcal{O}_{S}}_{\text{Scenario } \omega_{1}} \underbrace{(p_{S}^{(\omega_{1})}, q_{S}^{(\omega_{1})})}_{\text{Scenario } \omega_{2}} \underbrace{(p_{S}^{(\omega_{1})}, q_{S}^{(\omega_{1})})}_{\text{Scenario } \omega_{2}} \underbrace{(p_{S}^{(\omega_{1})}, q_{S}^{(\omega_{1})})}_{\text{Scenario } \omega_{2}} \underbrace{(p_{S}^{(\omega_{1})}, q_{S}^{(\omega_{1})})}_{\text{Scenario } \omega_{2}} \underbrace{(p_{S}^{(\omega_{1})}, q_{S}^{(\omega_{1})})}_{\text{Scenario } \omega_{1}} \underbrace{(q_{S}^{(\omega_{1})}, q_{S}^{($$

- Given the set of the
- □ Let $(\tilde{p}_R, \tilde{q}_R)$ be the vector of uncertain rival price/quantity bids.
- The optimal bidding problem under uncertainty on rival's bid can be formulated as:

$$\max_{\boldsymbol{p}_{S},\boldsymbol{q}_{S},\tilde{\mathbf{x}}_{S},\tilde{\boldsymbol{\lambda}}} \Phi\left(\sum_{j\in\mathcal{N}_{S}} (\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S})\right)$$

subject to:
$$(\boldsymbol{p}_{S},\boldsymbol{q}_{S}) \in \mathcal{O}_{S}$$

$$(\mathbf{x}_{S},\boldsymbol{\lambda}) \in \mathcal{M}(\boldsymbol{p}_{S},\boldsymbol{q}_{S},\tilde{\boldsymbol{p}}_{R},\tilde{\boldsymbol{q}}_{R})$$

We argue that characterizing an adequate probability distribution for the rival bids $(\tilde{p}_R, \tilde{q}_R)$ is a hard task due to its complexity.

- In this context *Robust Optimization* emerges as a powerful tool.
- Let \mathcal{O}_R be set the of feasible ("credible") bids of *Rival Players*. Then, the proposed model is:

$$\max_{p^{S},q^{S}} \left\{ \min_{p^{R},q^{R},g^{S},\lambda} \sum_{j\in\mathcal{N}_{S}} \left(\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S}\right) \right\}$$

subject to:

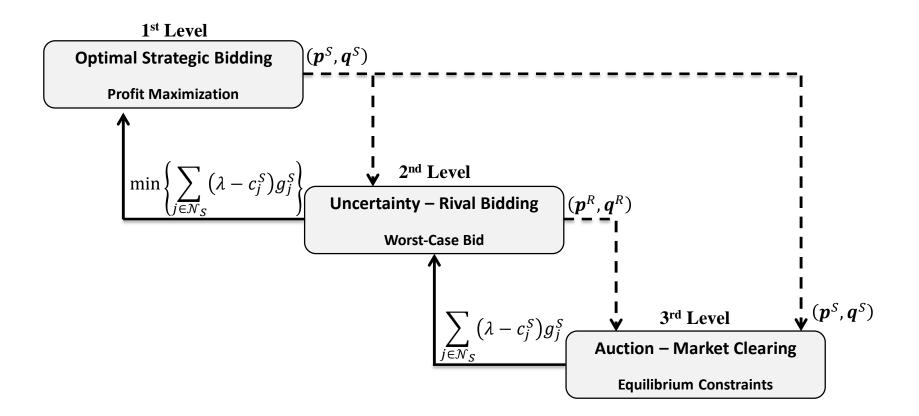
$$(\boldsymbol{p}^{R}, \boldsymbol{q}^{R}) \in \mathcal{O}_{R}$$

 $(\boldsymbol{g}^{S}, \lambda) \in \mathcal{M}(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}, \boldsymbol{p}^{R}, \boldsymbol{q}^{R})$

subject to:

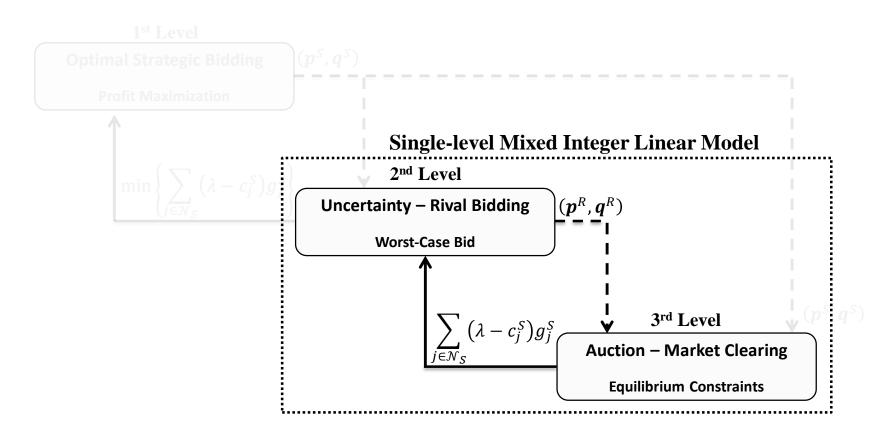
$$(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$$

In this context *Robust Optimization* emerges as a powerful tool.



How to solve the proposed model?

Transform the second and third-level problems into a single-level mixed integer linear model.



Solution Methodology – KKT System

How to solve the proposed model?

$$\max_{p^{S},q^{S}} \begin{cases} \min_{p^{R},q^{R},g^{S},\lambda} \sum_{j \in \mathcal{N}_{S}} (\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S}) \\ \text{subject to:} \\ (p^{R},q^{R}) \in \mathcal{O}_{R} \\ (g^{S},\lambda) \in \mathcal{M}(p^{S},q^{S},p^{R},q^{R}) \end{cases}$$

subject to:

 $(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$

Firstly, recall that the day-ahead problem is linear and continuous.
We can replace $\mathcal{M}(\boldsymbol{p}^S, \boldsymbol{q}^S, \boldsymbol{p}^R, \boldsymbol{q}^R)$ by its KKT optimality conditions

 $\begin{array}{l} \underbrace{\textit{Day-Ahead Problem}}_{g^{S},g^{R}} \sum_{j \in \mathcal{N}_{S}} p_{j}^{S} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} p_{i}^{R} g_{i}^{R} \\ \text{subject to:} \\ \\ \sum_{j \in \mathcal{N}_{S}} g_{j}^{S} + \sum_{i \in \mathcal{N}_{R}} g_{i}^{R} = d; \\ 0 \leq g_{j}^{S} \leq q_{j}^{S}, \\ 0 \leq g_{i}^{S} \leq q_{i}^{R}, \\ \end{array} \begin{array}{l} : (\overline{\lambda}_{i}^{S}, \underline{\lambda}_{j}^{S}) \\ \forall j \in \mathcal{N}_{S}; \\ 0 \leq g_{i}^{R} \leq q_{i}^{R}, \\ \end{array} \begin{array}{l} : (\overline{\lambda}_{i}^{R}, \underline{\lambda}_{i}^{R}) \\ \forall i \in \mathcal{N}_{R}. \end{array}$

Solution Methodology – KKT System

How to solve the proposed model?		Primal Constraints	Stationarity Constraints		
$\max_{\boldsymbol{p}^{S},\boldsymbol{q}^{S}} \begin{cases} \min_{\boldsymbol{p}^{R},\boldsymbol{q}^{R},\boldsymbol{g}^{S},\boldsymbol{\lambda}} \sum_{j\in\mathcal{N}_{S}} (\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S}) \\ \overline{\lambda}^{S}, \underline{\lambda}^{S}, \overline{\lambda}^{R}, \underline{\lambda}^{R}, \boldsymbol{\lambda} \end{cases}$			Dual Constraints		
		Complementarity Constraints			
Ϋ́Υ					
	subject to:				
	$(\boldsymbol{p}^R, \boldsymbol{q}^R) \in \mathcal{O}_R$				
	$\sum_{j\in\mathcal{N}_S}g_j^S+\sum_{i\in\mathcal{N}_R}g_i^R=d;$		$p_j^S - \lambda + \overline{\lambda}_j^S - \underline{\lambda}_j^S = 0$	$\forall j \in \mathcal{N}_S;$	
	$0 \le g_j^S \le q_j^S,$	$\forall j \in \mathcal{N}_S;$	$p_i^R - \lambda + \overline{\lambda}_i^R - \underline{\lambda}_i^R = 0$,	$\forall i \in \mathcal{N}_R;$	
	$0 \leq g_i^R \leq q_i^R$,	$\forall i \in \mathcal{N}_R;$	$\overline{\lambda}_{j}^{S}$, $\underline{\lambda}_{j}^{S}$, $\underline{\lambda}_{i}^{R}$, $\overline{\lambda}_{i}^{R} \ge 0$	$\forall j \in \mathcal{N}_S, i \in \mathcal{N}_R;$	
	$ig(q_j^S-g_j^Sig)ar\lambda_j^S=0$,	$\forall j \in \mathcal{N}_{S};$	$(q_i^R - g_i^R)ar{\lambda}_i^R = 0$,	$\forall i \in \mathcal{N}_R;$	
	$g_j^S \underline{\lambda}_j^S = 0$	$\forall j \in \mathcal{N}_{S};$	$g_i^R \underline{\lambda}_i^R = 0$	$\forall i \in \mathcal{N}_R;$	

subject to:

 $(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$

Bilinear Product – Day-Ahead Revenue

How to solve the proposed model?

 $\max_{p^{S},q^{S}} \left\{ \min_{\substack{p^{R},q^{R},g^{S},\lambda\\\overline{\lambda}^{S},\lambda^{S},\overline{\lambda}^{R},\lambda^{R},\lambda}} \sum_{j\in\mathcal{N}_{S}} (\lambda g_{j}^{S} - c_{j}^{S} g_{j}^{S}) \right.$ subject to: $(\boldsymbol{p}^{R},\boldsymbol{q}^{R})\in\mathcal{O}_{R}$ $\sum_{j\in\mathcal{N}_S} g_j^S + \sum_{i\in\mathcal{N}_S} g_i^R = d;$ $p_i^S - \lambda + \overline{\lambda}_i^S - \underline{\lambda}_i^S = 0$ $\forall j \in \mathcal{N}_{S};$ $p_i^R - \lambda + \overline{\lambda}_i^R - \lambda_i^R = 0, \qquad \forall i \in \mathcal{N}_R;$ $0 \le g_i^S \le q_i^S, \qquad \forall j \in \mathcal{N}_S;$ $\overline{\lambda}_{i}^{S}, \lambda_{i}^{S}, \lambda_{i}^{R}, \overline{\lambda}_{i}^{R} \ge 0$ $0 \leq g_i^R \leq q_i^R$, $\forall i \in \mathcal{N}_R$; $\forall j \in \mathcal{N}_S, i \in \mathcal{N}_R;$ $(q_i^S - g_j^S)\overline{\lambda}_i^S = 0, \qquad \forall j \in \mathcal{N}_S;$ $(q_i^R - g_i^R)\bar{\lambda}_i^R = 0,$ $\forall i \in \mathcal{N}_R;$ $\forall i \in \mathcal{N}_R;$ $g_i^S \underline{\lambda}_i^S = 0$ $\forall j \in \mathcal{N}_S; \qquad \qquad g_i^R \lambda_i^R = 0$

subject to:

 $(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$

Bilinear Product – Day-Ahead Revenue

How to solve the proposed model?

$\max_{p^{S},q^{S}} \left\{ \min_{\substack{p^{R},q^{R},g^{S},\lambda\\ \overline{\lambda}^{S},\underline{\lambda}^{S},\overline{\lambda}^{R},\underline{\lambda}^{R},\lambda}} \sum_{j\in\mathcal{N}_{S}} \left(p_{j}^{S}g_{j}^{S} + \overline{\lambda} \right) \right\}$	$\left(s_{j} q_{j}^{s} - c_{j}^{s} g_{j}^{s} \right) $
subject to:	
$(\boldsymbol{p}^{R}, \boldsymbol{q}^{R}) \in \mathcal{O}_{R}$	
$\sum_{j\in\mathcal{N}_S}g_j^S+\sum_{i\in\mathcal{N}_R}g_i^R=d;$	
$0\leq g_{j}^{S}\leq q_{j}^{S}$,	$\forall j \in \mathcal{N}_S;$
$0\leq g_{i}^{R}\leq q_{i}^{R}$,	$\forall i \in \mathcal{N}_R;$
$ig(q_j^S-g_j^Sig)ar\lambda_j^S=0$,	$\forall j \in \mathcal{N}_S;$
$g_j^S \underline{\lambda}_j^S = 0$	$\forall j \in \mathcal{N}_S;$

Bilinear product: λg_i^S

We can combine these equations and write the bilinear product as:

$$\lambda \, g_j^{\,S} = p_j^{\,S} g_j^{\,S} + \overline{\lambda}_j^{\,S} q_j^{\,S}$$

 $p_{j}^{S} - \lambda + \overline{\lambda}_{j}^{S} - \underline{\lambda}_{j}^{S} = 0 \qquad \forall j \in \mathcal{N}_{S};$ $p_{i}^{R} - \lambda + \overline{\lambda}_{i}^{R} - \underline{\lambda}_{i}^{R} = 0, \qquad \forall i \in \mathcal{N}_{R};$ $\overline{\lambda}_{j}^{S}, \underline{\lambda}_{j}^{S}, \underline{\lambda}_{i}^{R}, \overline{\lambda}_{i}^{R} \ge 0 \qquad \forall j \in \mathcal{N}_{S}, i \in \mathcal{N}_{R};$ $(q_{i}^{R} - g_{i}^{R}) \overline{\lambda}_{i}^{R} = 0, \qquad \forall i \in \mathcal{N}_{R};$ $g_{i}^{R} \underline{\lambda}_{i}^{R} = 0 \qquad \forall i \in \mathcal{N}_{R};$

subject to:

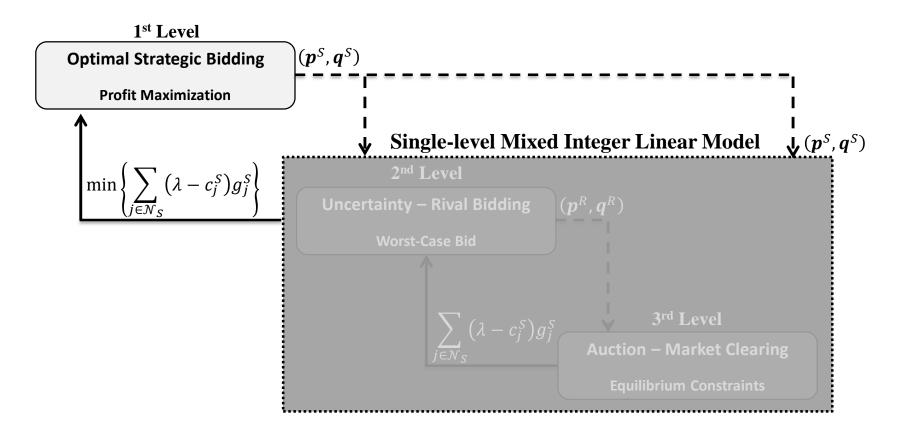
 $(\boldsymbol{p}^{S}, \boldsymbol{q}^{S}) \in \mathcal{O}_{S}$

Complementarity Constraints

How to solve the proposed model?

$$\begin{split} \max_{p^{S},q^{S}} \left\{ \begin{array}{l} \min_{\substack{p^{R},q^{R},g^{S},\lambda\\ \bar{\chi}^{S},\underline{\lambda}^{S},\overline{\chi}^{R},\underline{\lambda}^{R},\lambda} \end{array} \sum_{j\in\mathcal{N}_{S}} \left(p_{j}^{S}g_{j}^{S} + \overline{\lambda}_{j}^{S}q_{j}^{S} - c_{j}^{S}g_{j}^{S} \right) \\ \text{subject to:} \\ (p^{R},q^{R}) \in \mathcal{O}_{R} \\ & \sum_{j\in\mathcal{N}_{S}} g_{j}^{S} + \sum_{i\in\mathcal{N}_{R}} g_{i}^{R} = d; \\ 0 \leq g_{j}^{S} \leq q_{j}^{S}, \quad \forall j \in \mathcal{N}_{S}; \\ 0 \leq g_{i}^{S} \leq q_{i}^{S}, \quad \forall j \in \mathcal{N}_{S}; \\ p_{i}^{R} - \lambda + \overline{\lambda}_{i}^{R} - \underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ 0 \leq g_{i}^{R} \leq q_{i}^{R}, \quad \forall i \in \mathcal{N}_{R}; \\ (q_{j}^{S} - g_{j}^{S})\overline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ (q_{i}^{S} - g_{i}^{S})\overline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ g_{j}^{S}\underline{\lambda}_{j}^{S} = 0 \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{j}^{S} = 0 \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{j}^{S}\underline{\lambda}_{j}^{S} = 0 \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{j}^{S}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{j}^{R}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ g_{i}^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ f^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ f^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{S} = 0, \quad \forall j \in \mathcal{N}_{S}; \\ f^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{i}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall i \in \mathcal{N}_{R}; \\ g_{i}^{R}\underline{\lambda}_{j}^{R} = 0, \quad \forall$$

- How to solve the proposed model?
 - Apply Column-and-Constraint Generation Algorithms.



To ease the presentation of the Column-and-Constraint Generation Algorithm, the two-level model will be presented in a compact way.

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0} \atop \boldsymbol{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\} \right\}$$

 \square Where \mathbb{B} is a binary set.

To ease the presentation of the Column-and-Constraint Generation Algorithm, the two-level model will be presented in a compact way.

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0} \atop \boldsymbol{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\} \right\}$$

- \Box Where \mathbb{B} is a binary set.
- Enquivalently, we can "split" the second-level problem into two problems:

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{u} \in \mathbb{B}} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} : \boldsymbol{\theta} \right\} \right\}$$

 \Box With θ the dual variable of the inner-problem constraints.

To ease the presentation of the Column-and-Constraint Generation Algorithm, the two-level model will be presented in a compact way.

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0} \atop \boldsymbol{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\} \right\}$$

- \Box Where \mathbb{B} is a binary set.
- Enquivalently, we can "split" the second-level problem into two problems:

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{u} \in \mathbb{B}} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} : \boldsymbol{\theta} \right\} \right\}$$

- **With** $\boldsymbol{\theta}$ the dual variable of the inner-problem constraints.
- By duality theory,

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{u} \in \mathbb{B}} \left\{ \max_{\boldsymbol{\theta} \ge \boldsymbol{0}} \left\{ \boldsymbol{\theta}^T (\boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b}) \mid \boldsymbol{L}^T \boldsymbol{\theta} \le \boldsymbol{g} + \boldsymbol{B}^T \boldsymbol{z}_U \right\} \right\} \right\}$$

To ease the presentation of the Column-and-Constraint Generation Algorithm, the two-level model will be presented in a compact way.

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0} \atop \boldsymbol{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\} \right\}$$

- \Box Where \mathbb{B} is a binary set.
- Enquivalently, we can "split" the second-level problem into two problems:

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{u} \in \mathbb{B}} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} : \boldsymbol{\theta} \right\} \right\}$$

- \Box With θ the dual variable of the inner-problem constraints.
- Equivalently, middle and inner problems on the constraints $\max_{z_{U},\eta} \eta$

subject to:

$$\eta \leq \min_{\boldsymbol{u} \in \mathbb{B}} \left\{ \max_{\boldsymbol{\theta} \geq \boldsymbol{0}} \left\{ \boldsymbol{\theta}^T (\boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b}) \mid \boldsymbol{L}^T \boldsymbol{\theta} \leq \boldsymbol{g} + \boldsymbol{B}^T \boldsymbol{z}_U \right\} \right\}$$
$$\boldsymbol{z}_U \in \mathcal{O}_S$$

To ease the presentation of the Column-and-Constraint Generation Algorithm, the two-level model will be presented in a compact way.

$$\max_{\boldsymbol{z}_U \in \mathcal{O}_S} \left\{ \min_{\boldsymbol{z}_L \ge \boldsymbol{0} \atop \boldsymbol{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\} \right\}$$

- \Box Where \mathbb{B} is a binary set.
- Enquivalently, we can "split" the second-level problem into two problems:

$$\max_{\mathbf{z}_U \in \mathcal{O}_S} \left\{ \min_{\mathbf{u} \in \mathbb{B}} \left\{ \min_{\mathbf{z}_L \ge \mathbf{0}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_U^T \boldsymbol{B} \boldsymbol{z}_L \mid \boldsymbol{L} \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_U + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} : \boldsymbol{\theta} \right\} \right\}$$

- \square With θ the dual variable of the inner-problem constraints.
- Since \mathbb{B} is a binary set, we can rewrite in an equivalent form with an exponential set of constraints $\max_{z_{U},\eta} \eta$

subject to:

$$\eta \leq \max_{\boldsymbol{\theta}_{\boldsymbol{u}} \geq \boldsymbol{0}} \left\{ \boldsymbol{\theta}_{\boldsymbol{u}}^{T} (\boldsymbol{E} \boldsymbol{z}_{U} + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b}) \mid \boldsymbol{L}^{T} \boldsymbol{\theta}_{\boldsymbol{u}} \leq \boldsymbol{g} + \boldsymbol{B}^{T} \boldsymbol{z}_{U} \right\} \qquad \forall \, \boldsymbol{u} \in \mathbb{B}$$

 $\mathbf{z}_U \in \mathcal{O}_S$

CCG Algorithm – Full Problem

Therefore, the following single-level formulation can be written

$$\varphi^* = \max_{z_U, \eta, \theta_u} -f_S(z_U) + \eta$$

subject to:
$$\eta \le \theta_u^T (Ez_U + Fu + b) \qquad \forall u \in \mathbb{B}$$
$$L^T \theta_u \le g + B^T z_U \qquad \forall u \in \mathbb{B}$$
$$\theta_u \ge 0 \qquad \forall u \in \mathbb{B}$$

$$\mathbf{z}_U \in \mathcal{O}_S$$

□ The resulting model is a large-scale optimization proble with (pottentially) exponential set of constraints, but suitable for Column-and-Constraint Generation Algorithm.

CCG Algorithm – Master Problem

Then, consider $\mathbb{B}_k \subset \mathbb{B}$ and the following optimization problem:

$$\overline{\varphi}_{k} = \max_{\boldsymbol{z}_{U}, \eta, \theta_{u}} -f_{S}(\boldsymbol{z}_{U}) + \eta$$
subject to:

$$\eta \leq \boldsymbol{\theta}_{u}^{T}(\boldsymbol{E}\boldsymbol{z}_{U} + \boldsymbol{F}\boldsymbol{u} + \boldsymbol{b}) \qquad \forall \boldsymbol{u} \in \mathbb{B}_{k}$$

$$\boldsymbol{L}^{T}\boldsymbol{\theta}_{u} \leq \boldsymbol{g} + \boldsymbol{B}^{T}\boldsymbol{z}_{U} \qquad \forall \boldsymbol{u} \in \mathbb{B}_{k}$$

$$\boldsymbol{\theta}_{u} \geq \boldsymbol{0} \qquad \forall \boldsymbol{u} \in \mathbb{B}_{k}$$

$$\boldsymbol{z}_{U} \in \mathcal{O}_{S}$$

□ Since $\mathbb{B}_k \subset \mathbb{B}$, $\overline{\varphi}_k \ge \varphi^*$ and therefore an upper-bound for the *Full Problem*.

Let $z_{U,(k)}$ be the optimal solution for z_U .

CCG Algorithm – Oracle

Now, consider the following optimization problem:

$$\underline{\varphi}_k = \min_{\mathbf{z}_L \ge \mathbf{0}, \ \mathbf{u} \in \mathbb{B}} \left\{ \boldsymbol{g}^T \boldsymbol{z}_L + \boldsymbol{z}_{U,(k)}^T \boldsymbol{B} \boldsymbol{z}_L \mid L \boldsymbol{z}_L \ge \boldsymbol{E} \boldsymbol{z}_{U,(k)} + \boldsymbol{F} \boldsymbol{u} + \boldsymbol{b} \right\}$$

- Since $\mathbf{z}_{U,(k)} \in \mathcal{O}_S$, then $\varphi_k \leq \varphi^*$ and therefore a lower-bound for the *Full Problem*.
- \Box Let \boldsymbol{u}_k be the optimal solution for the binary vector \boldsymbol{u} .

CCG Algorithm – Description

The pseudocode of the Column-and-Constraint Generation algorithm is:

Initialization: $UB \leftarrow +\infty, LB \leftarrow -\infty, k \leftarrow 1 \text{ and } \varepsilon (> 0)$

while $UB - LB \ge \varepsilon$ do

Step 1: Solve *Master Problem* with \mathbb{B}_k . Store $\mathbf{z}_{U,(k)}$ and set $UB \leftarrow \overline{\varphi}_k$;

Step 2: Solve *Oracle Problem* with $\mathbf{z}_{U,(k)}$. Let \mathbf{u}_k be the corresponding optimal binary vector. Set $LB \leftarrow \max\{LB, \underline{\varphi}_k\}$;

Step 3: Make $\mathbb{B}_{k+1} \leftarrow \mathbb{B}_k \cup \{u_k\}$. Set $k \leftarrow k+1$;

end

Return $Z_{U,(k-1)}$

Day-Ahead Bidding Problem – Small Example

- Assume the following small example.
- Strategic Player: fixed price bid; game only on quantity bids.

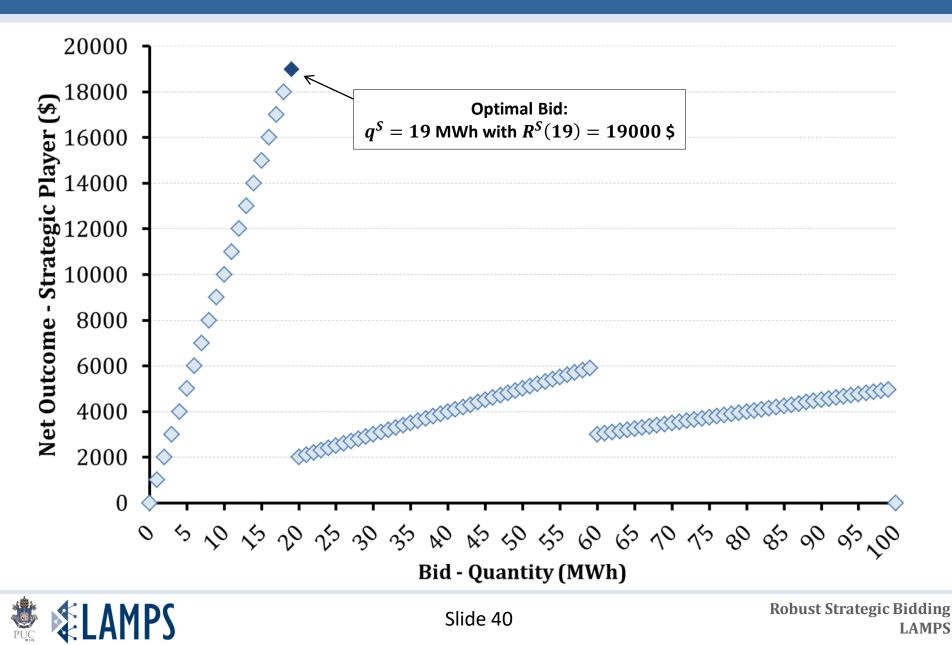
Strategic	Price Bid	Quantity Bid	Cost		
Unit	(\$/MWh)	(MWh)	(\$/MWh)		
#1	0.00	[0:1:100]	0.00		

Rival Players: No uncertainty is assumed on rival bids (perfect information)

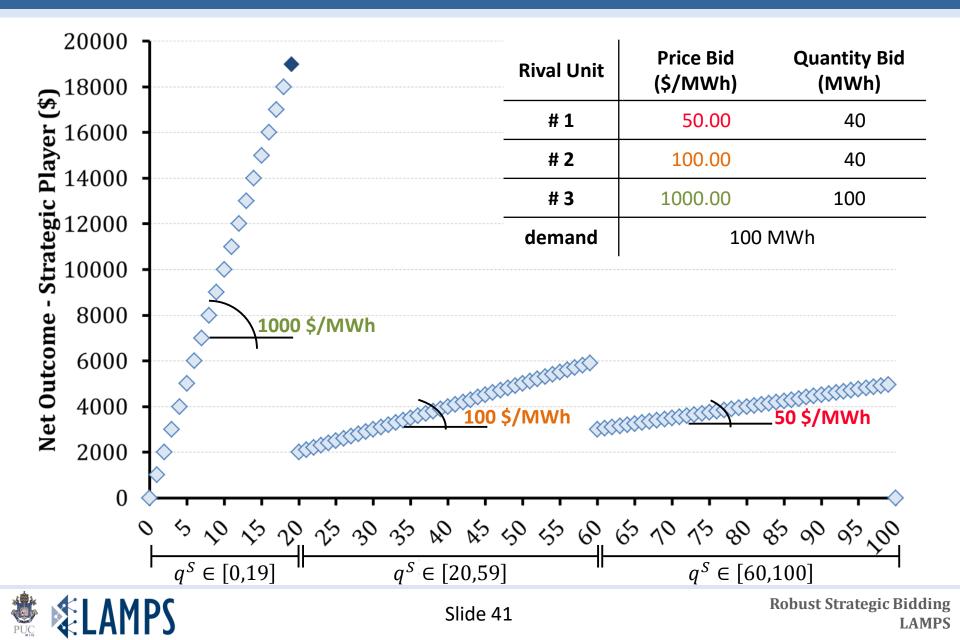
Rival Unit	Price Bid (\$/MWh)	Quantity Bid (MWh)			
# 1	50.00	40			
# 2	100.00	40			
# 3	1000.00	100			

Buyer: demand of d = 100 MWh

Small Example – Strategic Player Profit



Small Example – Strategic Player Profit

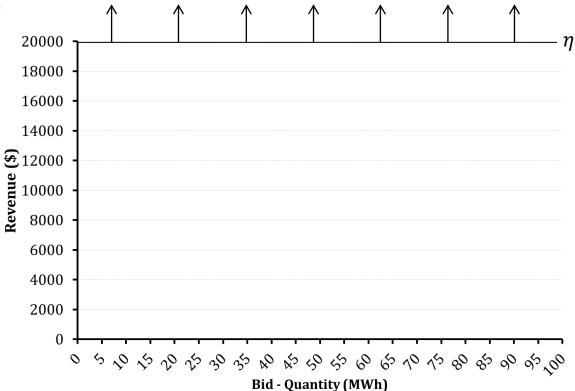


Small Example – CCGA Outline

- How is intuition behind the CCGA applied to this problem?
- Basically, each set of row and columm inserted in the Master Problem is related to a linear piece of the Strategic Player profit function.

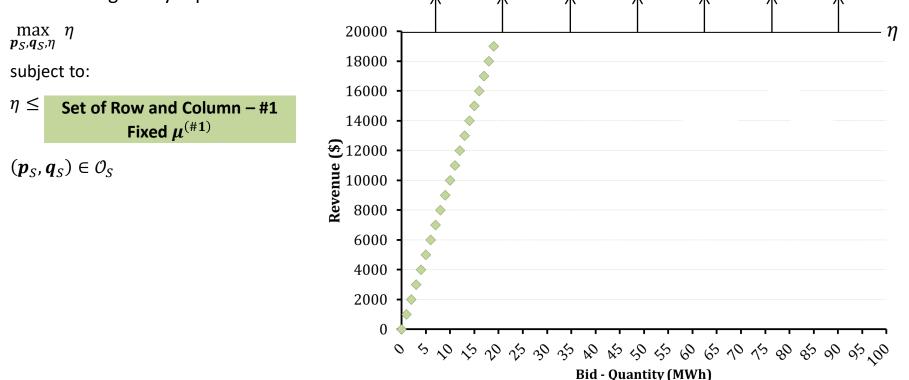
 $\max_{p_{S},q_{S},\eta} \eta$ subject to:

 $(\boldsymbol{p}_S, \boldsymbol{q}_S) \in \mathcal{O}_S$



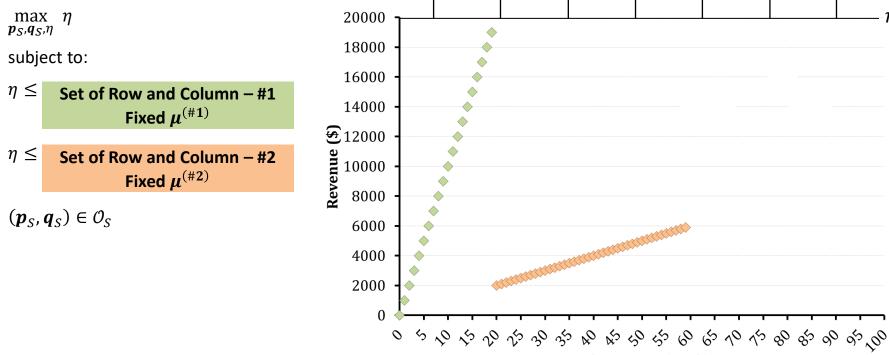
Small Example – CCGA Outline

- How is intuition behind the CCGA applied to this problem?
- Basically, each set of row and columm inserted in the Master Problem is related to a linear piece of the Strategic Player profit function.



Small Example – CCGA Outline

- How is intuition behind the CCGA applied to this problem?
- Basically, each set of row and columm inserted in the Master Problem is related to a linear piece of the Strategic Player profit function.

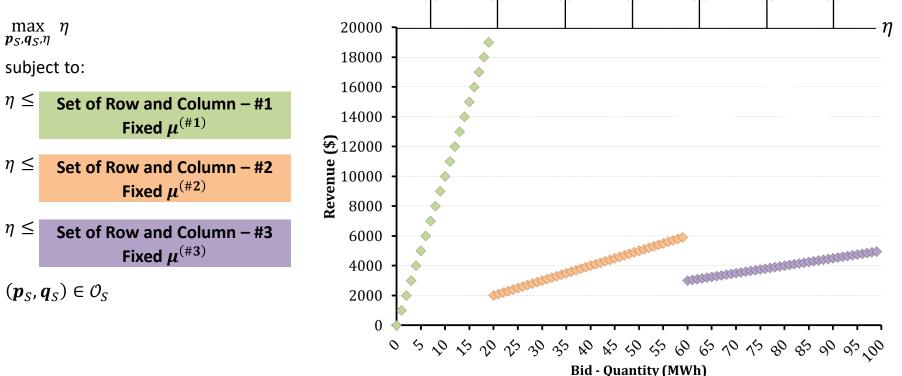


Bid - Quantity (MWh)

n

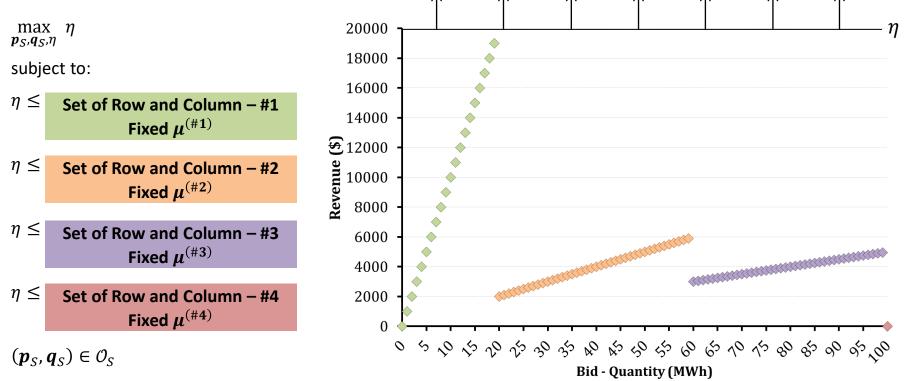
Small Example - CCGA Outline

- How is intuition behind the CCGA applied to this problem?
- Basically, each set of row and columm inserted in the Master Problem is related to a linear piece of the Strategic Player profit function.



Small Example - CCGA Outline

- How is intuition behind the CCGA applied to this problem?
- Basically, each set of row and columm inserted in the Master Problem is related to a linear piece of the Strategic Player profit function.



At each new iteration, a new linear piece is "inserted" into the Master Problem.

Case Study – Uncertainty in Rival's Bid

This second numerical experiment is composed by

- The strategic player own two $(N_S = 2)$ power units;
- We consider 14 rival players ($N_R = 14$), devided in $N_R^{(PM)} = 4$ price makers and $N_R^{(PT)} = 10$ price takers;
- A demand of d = 195.
- The strategic player feasible set is:

$$\mathcal{O}_{S} = \left\{ (\boldsymbol{p}_{S}, \boldsymbol{q}_{S}) \in \mathbb{Z}^{N_{S}} \times \mathbb{Z}^{N_{S}} \middle| \begin{array}{l} 0 \leq p_{S,j} \leq \bar{p}_{S,j}, \quad \forall j \in \mathcal{N}_{S} \\ 0 \leq q_{S,j} \leq \bar{q}_{S,j}, \quad \forall j \in \mathcal{N}_{S} \end{array} \right\}$$

	Cost (\$/MWh)	Capacity (MWh)	Price Cap (\$/MWh)	Price Maker	$\frac{\underline{q}_R}{(\text{MWh})}$	$ar{m{q}}_R$ (MWh)	c_R (\$/MWh)	Price Taker	$\frac{\underline{q}_R}{(\text{MWh})}$	$ar{m{q}}_R$ (MWh)	c_R (\$/MWh)
Unit #1	10.00	50	60.00	#1	10	40	60.00	#1	0	2	26.00
Unit #2	30.00	20	60.00	#2	20	60	40.00	#2	0	3	48.00
				#3	5	40	45.00	#3	0	2	28.00
				#4	10	50	15.00	#4	0	3	35.00
					I			#5	0	2	39.00
								#6	0	2	32.00
								#7	0	2	49.00
								#8	0	3	54.00
								#9	0	3	29.00
								#10	0	3	28.00

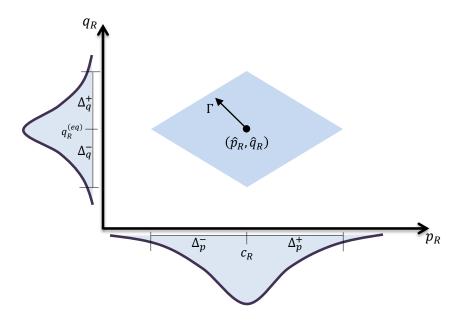
Case Study – Uncertainty in Rival's Bid

- In this numerical experiment, we assume available na estimative (Nash-Cournot equilibrium) of the rival's bid, denoted by (\hat{p}_R, \hat{q}_R) .
 - We argue that an accurate estimation of a joint probability distribution of market conditions that induce the equilibrium is a hard task.
 - Therefore, deviations from the nominal equilibrium point are very likely to be observed.
- Two sources of uncertainty were considered:
 - 1. Imprecision over the equilibrium point evaluation;
 - 2. Uncertainty related to the rival players' strategic action;
- The rival players' uncertainty set can be formulated as follows:

Case Study – Imprecision on Nominal Bids Estimation

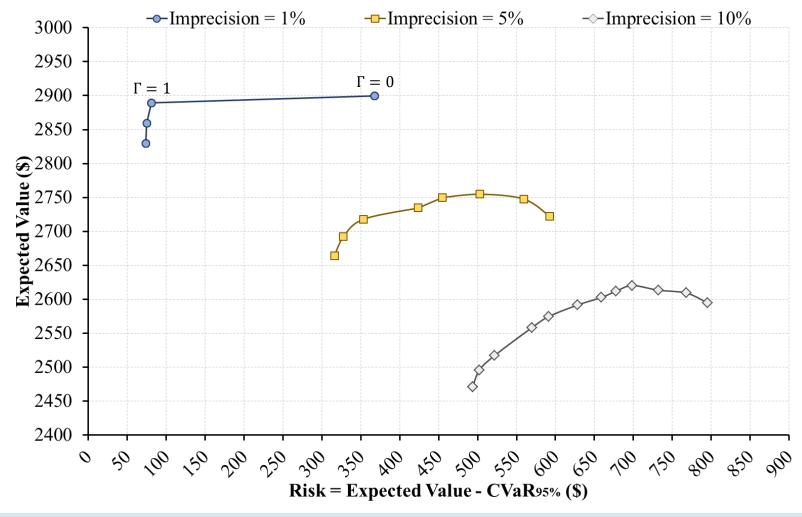
- Let $\delta > 0$ quantify the level of imprecision on the Nash equilibrium evaluation.
- We can charaterize an imprecision on nominal bids estimation as follows:

$$\begin{split} i. \quad \left(\hat{p}_{R,i}, \Delta_{p_i}^+, \Delta_{p_i}^-\right) &= \left(c_{R,i}, \delta c_{R,i}, \delta c_{R,i}\right), \qquad \forall i \in \mathcal{N}_R; \\ ii. \quad \left(\hat{q}_{R,i}, \Delta_{q_i}^+, \Delta_{q_i}^-\right) &= \left(q_{R,i}^{(eq)}, \delta q_{R,i}^{(eq)}, \delta q_{R,i}^{(eq)}\right), \qquad \forall i \in \mathcal{N}_R^{(PM)}; \\ iii. \quad \left(\hat{p}_{R,i}, \Delta_{p_i}^+, \Delta_{p_i}^-\right) &= \left(q_{R,i}^{(eq)}, 0, 0\right), \qquad \forall i \in \mathcal{N}_R^{(PT)}; \end{split}$$



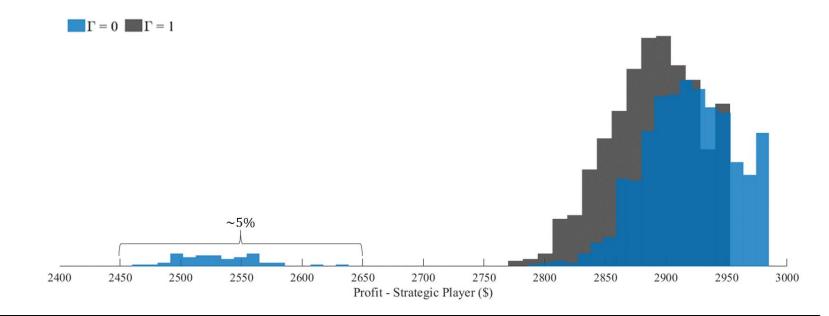
Case Study – Imprecision on Nominal Bids Estimation

Let $\delta > 0$ quantify the level of imprecision on the Nash equilibrium evaluation.



Case Study – Imprecision on Nominal Bids Estimation

- Let $\delta > 0$ quantify the level of imprecision on the Nash equilibrium evaluation.
 - Net revenue distribution assuming $\delta = 1\%$ for conservativeness levels of $\Gamma \in \{0, 1\}$.



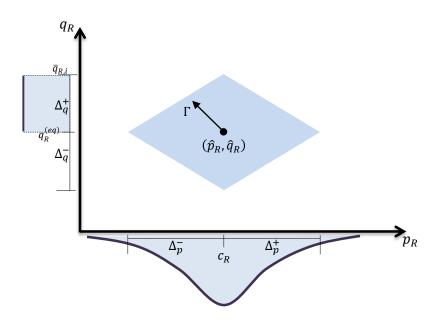
- We highlight that even in market conditions in which the equilibrium can be estimated within an 1% imprecision, bidding the equilibrium can induce a significant risk for the strategic player.
- The proposed robust model identify a bidding strategy with a slight reduction in expected revenue, but with significantly less risk.

Case Study - Uncertainty Rivals' (Quantity) Bid

Let $\zeta > 0$ quantify the level of uncertainty on rivals' bid and fix $\delta = 30\%$.

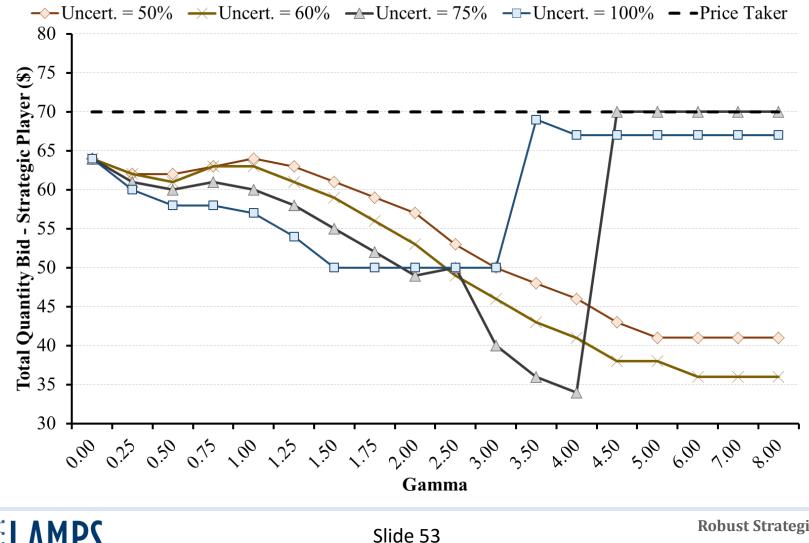
For this case, we can construct the uncertainty set as follows:

$$\begin{split} i. \quad \left(\hat{p}_{R,i}, \Delta_{p_{i}}^{+}, \Delta_{p_{i}}^{-} \right) &= \left(c_{R,i}, \delta c_{R,i}, \delta c_{R,i} \right), \qquad \forall i \in \mathcal{N}_{R}; \\ ii. \quad \left(\hat{q}_{R,i}, \Delta_{q_{i}}^{+}, \Delta_{q_{i}}^{-} \right) &= \left(q_{R,i}^{(eq)}, \zeta \left(\bar{q}_{R,i} - q_{R,i}^{(eq)} \right), 0 \right), \qquad \forall i \in \mathcal{N}_{R}^{(PM)}; \\ iii. \quad \left(\hat{p}_{R,i}, \Delta_{p_{i}}^{+}, \Delta_{p_{i}}^{-} \right) &= \left(q_{R,i}^{(eq)}, 0, 0 \right), \qquad \forall i \in \mathcal{N}_{R}^{(PT)}; \end{split}$$



Case Study – Uncertainty Rivals' (Quantity) Bid

Let $\zeta > 0$ quantify the level of uncertainty on rivals' bid and fix $\delta = 30\%$.



Thank You

<u>Contact</u>: Bruno Fanzeres – bruno.santos@puc-rio.br

<u>Website</u>: https://www.ind.puc-rio.br/~bruno

LAMPS: http://www.lamps.ind.puc-rio.br

Bruno Fanzeres, Shabbir Ahmed, and Alexandre Street, "Robust Strategic Bidding in Auction-Based Markets," *European Journal of Operational Research*, vol. 272, no. 3, pp. 1158-1172, Feb. 2019.

